Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY013235-12
Application #
6518702
Study Section
Biomedical Library and Informatics Review Committee (BLR)
Program Officer
Dudley, Peter A
Project Start
1994-07-01
Project End
2004-03-31
Budget Start
2002-04-01
Budget End
2004-03-31
Support Year
12
Fiscal Year
2002
Total Cost
$283,726
Indirect Cost
Name
University of California San Diego
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Boden, Catherine; Chan, Kwokleung; Sample, Pamela A et al. (2007) Assessing visual field clustering schemes using machine learning classifiers in standard perimetry. Invest Ophthalmol Vis Sci 48:5582-90
Sample, Pamela A; Boden, Catherine; Zhang, Zuohua et al. (2005) Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci 46:3684-92
Goldbaum, Michael H; Sample, Pamela A; Zhang, Zuohua et al. (2005) Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 46:3676-83
Goldbaum, Michael Henry (2005) Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects. Trans Am Ophthalmol Soc 103:270-80
Bowd, Christopher; Zangwill, Linda M; Medeiros, Felipe A et al. (2004) Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci 45:2255-62
Sample, Pamela A; Chan, Kwokleung; Boden, Catherine et al. (2004) Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 45:2596-605
Zangwill, Linda M; Chan, Kwokleung; Bowd, Christopher et al. (2004) Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 45:3144-51
Hoover, Adam; Goldbaum, Michael (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22:951-8
Sample, Pamela A; Goldbaum, Michael H; Chan, Kwokleung et al. (2002) Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 43:2660-5
Bowd, Christopher; Chan, Kwokleung; Zangwill, Linda M et al. (2002) Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci 43:3444-54

Showing the most recent 10 out of 12 publications