The overall goal of this proposal is to determine the area map of mouse extrastriate visual cortex, how the visual field is represented in these areas, whether different areas are connected to dorsal and ventral pathways and whether they represent functionally specialized processing streams. Preliminary studies, in which we have traced the outputs from three different points of V1 in the same animal, have revealed ten topographic maps in visual cortex. Receptive field mapping by multiunit recording has shown that each area contains an orderly map of the visual field. Anterograde tracing of outputs from each area have further revealed a network of connections, which suggests that areas are hierarchically organized and are linked by intertwined ventral and dorsal streams. Preliminary single unit recordings in ventral- and dorsal-stream areas show that the incidence of direction selective neurons is higher in the dorsal stream. The results suggest that ventral and dorsal pathways represent distinct visual processing streams, which may correspond to 'what' and 'where'streams in primates. This is the first demonstration that mouse visual cortex shares several principles of cortical organization with primates and suggests that the mouse is a good model of the human brain. Recent molecular genetic studies have identified dozens of gene mutations that affect cerebral cortex. In addition, genetic predispositions have been demonstrated for agnosias that affect the functioning of dorsal and ventral stream areas. To study the underlying molecular and synaptic mechanisms of these disorders it is essential to understand the structure and function of visual cortex in the mouse model. Given the impact of the Felleman and Van Essen (1991) area diagram for visual neuroscience, this must include first and foremost the identification of areas, the characterization of the areal hierarchy and the description of processing streams. Although area maps are available for rat and mouse, they differ enormously within and between species. The disagreements are due to pooling across animals and poor registration of partial maps using inadequate anatomical landmarks. We propose to resolve these conflicts with a novel approach that directly combines anatomical pathway tracing (Aim#1) and physiological receptive field mapping (Aim#2) to define areas. Interareal streams have previously not been studied in rodents. Thus, the proposed tracing studies of dorsal- and ventral-stream connections (Aim#3) combined with single unit recording of direction selective responses in dorsal and ventral stream areas (Aim#4) are conceptually novel. The significance of the proposed investigation is to complement functional studies in primate cortex and provide a mouse model for future studies of the molecular and synaptic basis of the human visual system.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
3R01EY016184-04S1
Application #
7824740
Study Section
Central Visual Processing Study Section (CVP)
Program Officer
Steinmetz, Michael A
Project Start
2006-03-01
Project End
2011-02-28
Budget Start
2009-06-01
Budget End
2011-02-28
Support Year
4
Fiscal Year
2009
Total Cost
$16,262
Indirect Cost
Name
Washington University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Horvát, Szabolcs; G?m?nu?, R?zvan; Ercsey-Ravasz, Mária et al. (2016) Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates. PLoS Biol 14:e1002512
D'Souza, Rinaldo David; Meier, Andrew Max; Bista, Pawan et al. (2016) Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife 5:
Ji, Weiqing; G?m?nu?, R?zvan; Bista, Pawan et al. (2015) Modularity in the Organization of Mouse Primary Visual Cortex. Neuron 87:632-43
Yang, Weiguo; Carrasquillo, Yarimar; Hooks, Bryan M et al. (2013) Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex. J Neurosci 33:17373-84
Wang, Quanxin; Burkhalter, Andreas (2013) Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J Neurosci 33:1696-705
Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32:4386-99
Wang, Quanxin; Gao, Enquan; Burkhalter, Andreas (2011) Gateways of ventral and dorsal streams in mouse visual cortex. J Neurosci 31:1905-18
Gao, Enquan; DeAngelis, Gregory C; Burkhalter, Andreas (2010) Parallel input channels to mouse primary visual cortex. J Neurosci 30:5912-26
Wang, Quanxin; Burkhalter, Andreas (2007) Area map of mouse visual cortex. J Comp Neurol 502:339-57
Wang, Quanxin; Gao, Enquan; Burkhalter, Andreas (2007) In vivo transcranial imaging of connections in mouse visual cortex. J Neurosci Methods 159:268-76