The overall goal of this study is to identify the sources of form-vision deficits in peripheral vision. Macula is the high-resolution patch in a human retina, which provides clear and sharp """"""""central"""""""" vision. Patients with various forms of macular disorders, such as aged-related macular degeneration, must see objects eccentrically and rely on their low-resolution peripheral visual fields to recognize objects, identify faces and read. Compared to the fovea, the periphery is far less capable of this type of form vision, even when its poor spatial resolution is compensated for by magnification and contrast enhancement. For example, reading in the periphery is laboriously slow, and objects can become unidentifiable in a cluttered scene. At present, we do not have a good understanding of how form vision in the periphery is achieved by the visual system, why peripheral form vision is qualitatively different from central vision, and what are the causes of the form-vision deficits in the periphery. Such lack of understanding hinders our ability in deriving effective rehabilitation regimens and adaptive technologies for patients with central vision loss. Our focus is to investigate form vision in the periphery with ecologically important stimuli (faces, objects, and letters). We hypothesize that form vision deficits in the periphery are largely due to a lack of mechanisms for properly selecting and assembling simple features into complex ones at an early stage of visual processing. We further hypothesize that practice improves peripheral form vision mostly by improving the visual system's ability to make better inference about the misassembled inputs at the later stages. Our investigation is divided into three interrelated parts. Parts 1 will use psychophysical and computational methods to identify the functional causes of form vision deficits in the periphery. Part 2 will use fMRI to locate the brain regions that are associated with these deficits in order to provide converging evidence for the findings from Parts 1. Part 3 will determine the functional and neural mechanisms that underlie form-vision learning in the periphery. We will conduct experiments on normally sighted young adults, patients with central vision loss, and older adults (aged-matched controls for the patients).

Public Health Relevance

The most common cause of visual impairment in the older population is age-related macular degeneration (AMD), which accounts for about 50% of all cases of registered blindness in industrialized countries (Koh &Ang, 2002). Patients with AMD and other macular disorders must view objects eccentrically and rely on their peripheral visual fields to recognize objects, identify faces and read. These form-vision tasks are often laborious if not impossible. The overall goal of this study is to identify the sources of form-vision deficits in peripheral vision, which we believe will enable the development of effective rehabilitation regimens and adaptive technologies.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY017707-02
Application #
7618411
Study Section
Central Visual Processing Study Section (CVP)
Program Officer
Steinmetz, Michael A
Project Start
2008-05-01
Project End
2012-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
2
Fiscal Year
2009
Total Cost
$270,954
Indirect Cost
Name
University of Southern California
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Chen, Nihong; Bao, Pinglei; Tjan, Bosco S (2018) Contextual-Dependent Attention Effect on Crowded Orientation Signals in Human Visual Cortex. J Neurosci 38:8433-8440
Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A et al. (2018) Hemifield columns co-opt ocular dominance column structure in human achiasma. Neuroimage 164:59-66
Agaoglu, Mehmet N; Sheehy, Christy K; Tiruveedhula, Pavan et al. (2018) Suboptimal eye movements for seeing fine details. J Vis 18:8
Shin, Kilho; Chung, Susana T L; Tjan, Bosco S (2017) Crowding, visual awareness, and their respective neural loci. J Vis 17:18
Wallace, Julian M; Chung, Susana T L; Tjan, Bosco S (2017) Object crowding in age-related macular degeneration. J Vis 17:33
Margalit, Eshed; Shah, Manan P; Tjan, Bosco S et al. (2016) The Lateral Occipital Complex shows no net response to object familiarity. J Vis 16:3
Agaoglu, Mehmet N; Chung, Susana T L (2016) Can (should) theories of crowding be unified? J Vis 16:10
A?ao?lu, Mehmet N; Ö?men, Haluk; Chung, Susana T L (2016) Unmasking saccadic uncrowding. Vision Res 127:152-164
Bernard, Jean-Baptiste; Chung, Susana T L (2016) The Role of External Features in Face Recognition with Central Vision Loss. Optom Vis Sci 93:510-20
Cunningham, Samantha I; Shi, Yonggang; Weiland, James D et al. (2015) Feasibility of Structural and Functional MRI Acquisition with Unpowered Implants in Argus II Retinal Prosthesis Patients: A Case Study. Transl Vis Sci Technol 4:6

Showing the most recent 10 out of 28 publications