The vascular system plays a fundamentally important role in development, homeostasis and disease. With examples of scheduled vascular regression (the hyaloid vessels) and in the mouse, postnatal angiogenesis (in the retina), the eye is an excellent structure in which to study vascular development. In this application, we propose to study to role of retinal microglia, a type of myeloid cell, in the regulation of retinal angiogenesis. Based on published and preliminary studies, we propose the hypothesis that Retinal microglia regulate vascular pattern by producing VEGF and, via Wnts and possibly Notch, the VEGF inhibitor Flt1. We propose three aims to investigate this hypothesis: (1) to determine whether microglial or Muller glial VEGF mediates attractive guidance for deep layer retinal angiogenesis. Published work shows that Muller glia makes VEGF and our Preliminary Studies show that microglia also do. These are two possible sources of VEGF that might act as an attractive guidance cues for descending angiogenic sprouts. (2) To determine whether the non-canonical Wnt-Flt1 response of microglia is the Wnt-cGMP/Ca2+ pathway. Our Preliminary Studies suggest that the non-canonical Wnt-cGMP/Ca2+ pathway are involved in the production of Flt1 by microglia. We will further assess these using pharmacological inhibitors in a culture assay and by assessing the in vivo consequences of genetic deletion of pathway components. (3) To determine whether a microglial Notch response up-regulates Flt1 and integrates with the Wnt pathway. Published work and Preliminary Studies show that both VECs and microglia show Notch-dependent up-regulation of Flt1. This raises the possibility that when angiogenic tip cells (that express the Notch ligand Dll4 in the deep vascular layer), make contact with microglia, there is an up-regulation of Flt1. Given that Wnts also regulate Flt1 expression, it also suggests that the Wnt and Notch pathways must be integrated. These studies are important in uncovering basic mechanisms by which angiogenesis is normally regulated and as a result, uncovering new ways in which blood vessel growth and regression might be regulated therapeutically. In particular, this work has implications for the vision-compromising ailments diabetic retinopathy, age-related macular degeneration and retinopathy of prematurity.

Public Health Relevance

In this application, we propose the study the role of macrophage-like cells called microglia in the development of blood vessels in the retina. We will study how microglia use growth factors called Wnt ligands to regulate the extent and pattern of blood vessels in the retina. This work has implications for the vascular diseases of the eye including diabetic retinopathy, the wet form of age-related macular degeneration and for retinopathy of prematurity.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY021636-04
Application #
8841367
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Shen, Grace L
Project Start
2012-05-01
Project End
2017-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
4
Fiscal Year
2015
Total Cost
$374,850
Indirect Cost
$129,850
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Nayak, Gowri; Odaka, Yoshinobu; Prasad, Vikram et al. (2018) Developmental vascular regression is regulated by a Wnt/?-catenin, MYC and CDKN1A pathway that controls cell proliferation and cell death. Development 145:
Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O et al. (2016) Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. Elife 5:e07727
Sessa, Roberto; Yuen, Don; Wan, Stephanie et al. (2016) Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis. Cell Res 26:262-5
Wang, Yuhua; Tadjuidje, Emmanuel; Pandey, Ram Naresh et al. (2016) The Eyes Absent Proteins in Developmental and Pathological Angiogenesis. Am J Pathol 186:568-78
Snowball, John; Ambalavanan, Manoj; Cornett, Bridget et al. (2015) Mesenchymal Wnt signaling promotes formation of sternum and thoracic body wall. Dev Biol 401:264-75
Qian, Bin-Zhi; Zhang, Hui; Li, Jiufeng et al. (2015) FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 212:1433-48
Irvine, Katharine M; Clouston, Andrew D; Gadd, Victoria L et al. (2015) Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. Fibrogenesis Tissue Repair 8:19
Riazifar, Hamidreza; Sun, Guoli; Wang, Xinjian et al. (2015) Phenotypic and functional characterization of Bst+/- mouse retina. Dis Model Mech 8:969-76
Yang, Jing; Cusimano, Antonella; Monga, Jappmann K et al. (2015) WNT5A inhibits hepatocyte proliferation and concludes ?-catenin signaling in liver regeneration. Am J Pathol 185:2194-205
Yang, Jing; Mowry, Laura E; Nejak-Bowen, Kari Nichole et al. (2014) ?-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology 60:964-76

Showing the most recent 10 out of 21 publications