Glaucoma is complex of devastating blinding diseases that together represent the primary cause of irreversible blindness in the U.S. There is substantial evidence that pathological mechanical stimulation mediated by an increase in intraocular pressure (IOP) plays a causal role in the etiology of glaucoma. The present proposal is to characterize the molecular mechanisms which might underlie the cellular response in this disease but could also play a key function in other diseases that involve mechanical stress in the retina, such as diabetic retinopathy, ischemia and macular edema. We found that a mechanosensitive cation channel, TRPV4, is selectively localized to retinal ganglion cells (RGCs) and in Muller glial cells. Because these are the two cell types that are specifically targeted in glaucoma, we hypothesize that mechanosensitive channels mediate the effects of pathological increases in IOP. The central focus of the proposal is to characterize this transduction mechanism in RGCs by combining biophysical, cellular and translational approaches. Studies proposed in Aim 1 will establish the molecular mechanism of mechanosensitive channel activation and desensitization, their role in calcium transport, cellular physiology and RGC survival. We will test conditions that mimic RGC injury in """"""""low-tension"""""""" pathologies and test a number of models under which mechanosensitive channels might contribute to excitotoxic RGC injury. The proposed studies will also capitalize on preliminary work which shows remarkable effectiveness of non toxic small molecule antagonists in blocking pressure-stimulated loss of RGCs in vitro and in vivo glaucoma models.
Aim 2 of the proposed research builds on the characterization of pressure-sensitive channels in Aim 1 to study how these mechanisms regulate the swelling response of RGCs and retinal astroglia. Although cells typically swell in response to normal light-evoked neuronal activity, swelling is exacerbated in pathological conditions such as ischemia and diabetes, and can be highly neurotoxic. The proposed studies will explore the molecular complexes that involve swelling-activated calcium channels, water channels, calcium waves and regulatory volume decrease mechanisms. Thus, the goal of proposed research is to establish an intuitive conceptual and experimental framework that helps unify our understanding of retinal IOP transduction, cell swelling, and volume sensing and calcium homeostasis in retinal cells. By doing so, it will help predict the effects of mechanical forces that act through direct hydrostatic compression of cellular membranes as well as determine molecular mechanisms that are activated by tensile stretching, pulling and swelling. We will then test these predictions using mouse models of inducible and chronic glaucoma. This may help to refine our understanding of mechanical injury in vision disorders such as glaucoma, diabetic retinopathy and ischemia and contribute to developing effective neuroprotective treatments.

Public Health Relevance

Excessive mechanical stimuli associated with increased intraocular pressure and cell swelling represents the main risk factor for developing retinal edema, ischemia and glaucoma. This application will test the hypothesis that retinal cells respond to such stimuli through specialized 'mechanosensitive'ion channels which, by increasing the intracellular concentration of calcium, regulate their pathophysiology. The proposed studies will elucidate the molecular mechanisms that regulate the function of these channels under low- and high-pressure conditions and determine whether suppression of these channels using non toxic small molecule antagonists protects the retina from neuronal degeneration in mouse glaucoma models.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY022076-02
Application #
8586264
Study Section
Special Emphasis Panel (BVS)
Program Officer
Chin, Hemin R
Project Start
2012-12-01
Project End
2016-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
2
Fiscal Year
2014
Total Cost
$335,250
Indirect Cost
$110,250
Name
University of Utah
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Yarishkin, Oleg; Phuong, Tam T T; Bretz, Colin A et al. (2018) TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 150:1660-1675
Yarishkin, Oleg; Phuong, Tam T T; Lakk, Monika et al. (2018) TRPV4 Does Not Regulate the Distal Retinal Light Response. Adv Exp Med Biol 1074:553-560
Lakk, Monika; Young, Derek; Baumann, Jackson M et al. (2018) Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci 12:353
Jo, Andrew O; Noel, Jennifer M; Lakk, Monika et al. (2017) Mouse retinal ganglion cell signalling is dynamically modulated through parallel anterograde activation of cannabinoid and vanilloid pathways. J Physiol 595:6499-6516
Lakk, Monika; Yarishkin, Oleg; Baumann, Jackson M et al. (2017) Cholesterol regulates polymodal sensory transduction in Müller glia. Glia 65:2038-2050
Phuong, Tam T T; Redmon, Sarah N; Yarishkin, Oleg et al. (2017) Calcium influx through TRPV4 channels modulates the adherens contacts between retinal microvascular endothelial cells. J Physiol 595:6869-6885
Toft-Bertelsen, Trine L; Križaj, David; MacAulay, Nanna (2017) When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J Physiol 595:3287-3302
Butler, Michael R; Ma, Hongwei; Yang, Fan et al. (2017) Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency. J Biol Chem 292:11189-11205
Ryskamp, Daniel A; Frye, Amber M; Phuong, Tam T T et al. (2016) TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep 6:30583
Križaj, David (2016) Polymodal Sensory Integration in Retinal Ganglion Cells. Adv Exp Med Biol 854:693-8

Showing the most recent 10 out of 27 publications