Congenital adrenal hyperplasia (CAH) is a form of adrenal insufficiency characterized by impaired cortisol synthesis and excessive adrenal androgen production. Children with CAH under the recommended oral hydrocortisone therapy are repeatedly exposed to the undesirable states of hypocortisolemia and hypercortisolemia. Hypocortisolemia triggers increased production of 17-hydroxyprogesterone (17OHP) and adrenal androgen (androstenedione; D4A), which can lead premature fusion of the growth plates, genital virilization, precocious puberty, adrenal rests, polycystic ovarian syndrome and infertility. Hypercortisolemia also has untoward long term effects, such as osteoporosis, short stature, and increased risk for developing metabolic syndrome-related atherosclerotic cardiovascular disease in adult life. Current oral hydrocortisone therapy is suboptimal as it does not replicate the pulsatile daily patterns of both circadian and ultradian cortisol secretion rhythms. As such, even patients on physiological doses experience adverse outcomes. Therefore, an improved and personalized drug delivery system that more closely replicates physiological pulsatile cortisol secretion and limits periods of hypo- and hypercortisolemia in children is needed. Our long term goal is to improve clinical outcomes in children with CAH through optimizing the dosing and scheduling of replacement therapy and avoid the hyperandrogenemia that is specific to CAH. This study's objective is to demonstrate that pulsatile SQHC pump delivery more closely replicates circadian and ultradian rhythms of cortisol and improves control of adrenal androgens. Our study's rationale is that cortisol profiles more consistent with physiologic rhythms of cortisol secretion will produce better health outcomes.
Our specific aim i s to design and implement an individualized pulsatile SQHC pump regimen that will more closely mimic cortisol circadian and ultradian rhythms in order to reduce the length of time a patient experiences hyper- and hypocortisolemia, and extend the duration of time 17OHP and D4A serum concentrations remain in an acceptable range. This is the first clinical trial in children with CAH that uses a pulsatile SQHC delivery system. Our approach is innovative as it is a substantive departure from the standard of care that could not only significantly improve long-term outcomes of patients with CAH, but also alter our fundamental approach to glucocorticoid dosing of patients with adrenal insufficiency of other etiologies, thus spurring development of novel methods of hormonal drug delivery, and stimulating new lines of investigation in physiological systems with tightly controlled feedback loops.

Public Health Relevance

Children with congenital adrenal hyperplasia (CAH) and other forms of adrenal insufficiency require life-long oral glucocorticoid treatment (cortisol replacement). However, negative long-term effects such as osteoporosis, metabolic syndrome-related cardiovascular disease, and numerous others, are still common even when treatment guidelines are followed. A likely reason is that current dosing does not mimic the normal physiologic cortisol rhythms. Recent advances in the delivery of drugs into subcutaneous tissue using pump technology now allow a pulsatile delivery of cortisol to capture both circadian and ultradian rhythms. It is particularly important to study this mode of administration early in life rather than waiting until adulthood when it may be too late to impact these adverse outcomes. Our proposed pulsatile delivery of cortisol could not only significantly improve long-term outcomes of patients with CAH, but also alter our fundamental approach to glucocorticoid dosing of patients with adrenal insufficiency of other etiologies, thus establishing a new standard of care, and stimulating new lines of investigation into intervention in physiological systems with tightly controlled feedback loops.

Agency
National Institute of Health (NIH)
Institute
Food and Drug Administration (FDA)
Type
Research Project (R01)
Project #
1R01FD006100-01A1
Application #
9584264
Study Section
Special Emphasis Panel (ZFD1)
Program Officer
Mueller, Christine
Project Start
2018-09-01
Project End
2021-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Pediatrics
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455