Hiebert, S W; Blake, M; Azizkhan, J et al. (1991) Role of E2F transcription factor in E1A-mediated trans activation of cellular genes. J Virol 65:3547-52
|
Phelps, W C; Bagchi, S; Barnes, J A et al. (1991) Analysis of trans activation by human papillomavirus type 16 E7 and adenovirus 12S E1A suggests a common mechanism. J Virol 65:6922-30
|
Neill, S D; Nevins, J R (1991) Genetic analysis of the adenovirus E4 6/7 trans activator: interaction with E2F and induction of a stable DNA-protein complex are critical for activity. J Virol 65:5364-73
|
Chellappan, S P; Hiebert, S; Mudryj, M et al. (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053-61
|
Mudryj, M; Devoto, S H; Hiebert, S W et al. (1991) Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65:1243-53
|
Rooney, R J; Raychaudhuri, P; Nevins, J R (1990) E4F and ATF, two transcription factors that recognize the same site, can be distinguished both physically and functionally: a role for E4F in E1A trans activation. Mol Cell Biol 10:5138-49
|
Weigel, R J; Nevins, J R (1990) Adenovirus infection of differentiated F9 cells results in a global shut-off of differentiation-induced gene expression. Nucleic Acids Res 18:6107-12
|
Raychaudhuri, P; Bagchi, S; Neill, S D et al. (1990) Activation of the E2F transcription factor in adenovirus-infected cells involves E1A-dependent stimulation of DNA-binding activity and induction of cooperative binding mediated by an E4 gene product. J Virol 64:2702-10
|
Chellappan, S P; Nevins, J R (1990) DNA octamer element can confer E1A trans-activation, and adenovirus infection results in a stimulation of the DNA-binding activity of OTF-1/NFIII factor. Proc Natl Acad Sci U S A 87:5878-82
|
Bagchi, S; Raychaudhuri, P; Nevins, J R (1990) Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62:659-69
|
Showing the most recent 10 out of 33 publications