Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
7R01GM026765-09
Application #
3274219
Study Section
Molecular Biology Study Section (MBY)
Project Start
1987-06-01
Project End
1990-08-31
Budget Start
1987-06-01
Budget End
1987-08-31
Support Year
9
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Duke University
Department
Type
Schools of Medicine
DUNS #
071723621
City
Durham
State
NC
Country
United States
Zip Code
27705
Hiebert, S W; Blake, M; Azizkhan, J et al. (1991) Role of E2F transcription factor in E1A-mediated trans activation of cellular genes. J Virol 65:3547-52
Phelps, W C; Bagchi, S; Barnes, J A et al. (1991) Analysis of trans activation by human papillomavirus type 16 E7 and adenovirus 12S E1A suggests a common mechanism. J Virol 65:6922-30
Neill, S D; Nevins, J R (1991) Genetic analysis of the adenovirus E4 6/7 trans activator: interaction with E2F and induction of a stable DNA-protein complex are critical for activity. J Virol 65:5364-73
Chellappan, S P; Hiebert, S; Mudryj, M et al. (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053-61
Mudryj, M; Devoto, S H; Hiebert, S W et al. (1991) Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65:1243-53
Rooney, R J; Raychaudhuri, P; Nevins, J R (1990) E4F and ATF, two transcription factors that recognize the same site, can be distinguished both physically and functionally: a role for E4F in E1A trans activation. Mol Cell Biol 10:5138-49
Weigel, R J; Nevins, J R (1990) Adenovirus infection of differentiated F9 cells results in a global shut-off of differentiation-induced gene expression. Nucleic Acids Res 18:6107-12
Raychaudhuri, P; Bagchi, S; Neill, S D et al. (1990) Activation of the E2F transcription factor in adenovirus-infected cells involves E1A-dependent stimulation of DNA-binding activity and induction of cooperative binding mediated by an E4 gene product. J Virol 64:2702-10
Chellappan, S P; Nevins, J R (1990) DNA octamer element can confer E1A trans-activation, and adenovirus infection results in a stimulation of the DNA-binding activity of OTF-1/NFIII factor. Proc Natl Acad Sci U S A 87:5878-82
Bagchi, S; Raychaudhuri, P; Nevins, J R (1990) Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62:659-69

Showing the most recent 10 out of 33 publications