Banerjee, A; Gregori, L; Xu, Y et al. (1993) The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. J Biol Chem 268:5668-75
|
Cook, W J; Jeffrey, L C; Xu, Y et al. (1993) Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry 32:13809-17
|
Haas, A L; Reback, P B; Chau, V (1991) Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E2(20K) AND E2(32K). J Biol Chem 266:5104-12
|
Dunten, R L; Cohen, R E; Gregori, L et al. (1991) Specific disulfide cleavage is required for ubiquitin conjugation and degradation of lysozyme. J Biol Chem 266:3260-7
|
Gregori, L; Poosch, M S; Cousins, G et al. (1990) A uniform isopeptide-linked multiubiquitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis. J Biol Chem 265:8354-7
|
Chau, V; Tobias, J W; Bachmair, A et al. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576-83
|
Shaw, G; Chau, V (1988) Ubiquitin and microtubule-associated protein tau immunoreactivity each define distinct structures with differing distributions and solubility properties in Alzheimer brain. Proc Natl Acad Sci U S A 85:2854-8
|
Perry, G; Friedman, R; Shaw, G et al. (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84:3033-6
|
Meyer, E M; West, C M; Chau, V (1986) Antibodies directed against ubiquitin inhibit high affinity [3H]choline uptake in rat cerebral cortical synaptosomes. J Biol Chem 261:14365-8
|