The research proposed aims to provide a better understanding of how membrane proteins acquire their final structures. The experiments will examine the roles of three sequence elements in determining the membrane structure of the E. coli serine chemoreceptor. The experiments will determine whether interactions between membrane- spanning sequences can contribute to their membrane insertion. It will also examine how an amphipathic sequence adjacent to one of the spanning sequences controls that sequence's membrane orientation. Additional experiments will examine how mutations altering sequences required for membrane insertion affect later stages in serine chemoreceptor assembly.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM046493-06
Application #
2022496
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1991-07-01
Project End
1998-11-30
Budget Start
1996-12-01
Budget End
1997-11-30
Support Year
6
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Washington
Department
Genetics
Type
Schools of Arts and Sciences
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Lee, M H; Kosuk, N; Bailey, J et al. (1999) Analysis of F factor TraD membrane topology by use of gene fusions and trypsin-sensitive insertions. J Bacteriol 181:6108-13
Bailey, J; Manoil, C (1998) Missense mutations that inactivate Escherichia coli lac permease. J Mol Biol 277:199-213
Manoil, C; Bailey, J (1997) A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J Mol Biol 267:250-63
Lee, M H; Manoil, C (1997) Engineering trypsin-sensitive sites in a membrane transport protein. Protein Eng 10:715-23
Nelson, B D; Manoil, C; Traxler, B (1997) Insertion mutagenesis of the lac repressor and its implications for structure-function analysis. J Bacteriol 179:3721-8
Seligman, L; Bailey, J; Manoil, C (1995) Sequences determining the cytoplasmic localization of a chemoreceptor domain. J Bacteriol 177:2315-20
Seligman, L; Manoil, C (1994) An amphipathic sequence determinant of membrane protein topology. J Biol Chem 269:19888-96
Lee, E; Manoil, C (1994) Mutations eliminating the protein export function of a membrane-spanning sequence. J Biol Chem 269:28822-8
Kimbrough, T G; Manoil, C (1994) Role of a small cytoplasmic domain in the establishment of serine chemoreceptor membrane topology. J Bacteriol 176:7118-20