Fis is a small DNA binding protein that plays an important role in a number of cellular processes in E. coli and other enterics, including site-specific recombination systems (e.g. Hin and Gin) and transcription initiation (e.g. rRNA and some tRNA promoters). Its regulation pattern is interesting, with synthesis dramatically increasing from undetectable to 25,000-50,000 molecules/cell following upshift. The goals of this grant are (1) to understand the mechanism of regulation of fis transcription, focusing primarily on the role of initiating nucleotide concentrations (CTP), IHF, and Fis itself on the activity of the fis promoter; (2) to determine what other protein products are controlled by Fis; and (3) to understand the determinants of DNA recognition by Fis.
Shao, Yongping; Feldman-Cohen, Leah S; Osuna, Robert (2008) Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 380:327-39 |
Shao, Yongping; Feldman-Cohen, Leah S; Osuna, Robert (2008) Functional characterization of the Escherichia coli Fis-DNA binding sequence. J Mol Biol 376:771-85 |
Du, Qiang; Park, Kyung Soo; Guo, Zhong et al. (2006) Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res 66:7024-31 |