Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM052993-02
Application #
2192217
Study Section
Biochemistry Study Section (BIO)
Project Start
1995-08-04
Project End
1999-07-31
Budget Start
1996-08-01
Budget End
1997-07-31
Support Year
2
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Barrera, Alessandra; Fang, Xingwang; Jacob, Jaby et al. (2002) Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates. Biochemistry 41:12986-94
Qin, H; Sosnick, T R; Pan, T (2001) Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry 40:11202-10
Loria, A; Pan, T (2001) Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res 29:1892-7
Fang, X W; Yang, X J; Littrell, K et al. (2001) The Bacillus subtilis RNase P holoenzyme contains two RNase P RNA and two RNase P protein subunits. RNA 7:233-41
Loria, A; Pan, T (2000) The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo. RNA 6:1413-22
Pan, T (2000) Probing RNA structure and function, by circular permutation. Methods Enzymol 317:313-30
Mobley, E M; Pan, T (1999) Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. Nucleic Acids Res 27:4298-304
Loria, A; Pan, T (1999) The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry 38:8612-20
Loria, A; Pan, T (1998) Recognition of the 5' leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37:10126-33
Odell, L; Huang, V; Jakacka, M et al. (1998) Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res 26:3717-23

Showing the most recent 10 out of 16 publications