It is estimated that approximately 30 million Americans are infected by onychomycosis. The current method of treatment for onychomycosis is oral systemic administration of antifungal agents, which has long treatment regimen and is not very effective. Reoccurrence of the disease is not uncommon, and up to one-fourth of the patients have persistent onychomycosis. Systemic side effects due to hepatic toxicity can be severe and necessitate regular blood tests and liver function monitoring. Local topical drug delivery has fewer adverse effects than systemic administration, but has not been very successful due to the resistive nail barrier. Transungual drug delivery for nail diseases has remained a challenge to pharmaceutical scientists. The objectives of this project are (1) to mechanistically quantify the barrier properties of human nail for iontophoretic transport, (2) to overcome this barrier for topical drug delivery with iontophoresis, and (3) to develop an iontophoresis system for the treatment of nail diseases. This project includes both basic and translational research. The systematic study of the barrier properties of human nail plate will provide new understanding of transungual drug delivery. Iontophoresis will be investigated for enhancing drug uptake and transport across the nail plate. These results will then be used to develop a transungual iontophoretic drug delivery system. The methodology and theoretical frameworks developed in our last funding period for biomembrane iontophoresis will provide the necessary knowledge base and expertise for applying the iontophoretic delivery technology to transungual drug delivery and nail disease treatment.

Public Health Relevance

Nail diseases such as onychomycosis have affected more than 30 million Americans with related healthcare spending on the diseases more than $1 billion worldwide. For example, the current method of treatment for onychomycosis is oral systemic administration of antifungal agents, which requires long treatment duration (e.g., three months), has relatively low total cure rate (less than 70%), and risks systemic side effects (e.g., hepatic toxicity). The successful development of a transungual iontophoretic system for nail disease treatment will benefit the public by improving treatment outcome and reduce healthcare cost.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM063559-06A2
Application #
7728143
Study Section
Gene and Drug Delivery Systems Study Section (GDD)
Program Officer
Okita, Richard T
Project Start
2003-01-01
Project End
2013-05-31
Budget Start
2009-08-03
Budget End
2010-05-31
Support Year
6
Fiscal Year
2009
Total Cost
$235,500
Indirect Cost
Name
University of Cincinnati
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Baswan, Sudhir; Kasting, Gerald B; Li, S Kevin et al. (2017) Understanding the formidable nail barrier: A review of the nail microstructure, composition and diseases. Mycoses 60:284-295
Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D et al. (2016) Size and Charge Dependence of Ion Transport in Human Nail Plate. J Pharm Sci 105:1201-8
Baswan, Sudhir M; Li, S Kevin; Kasting, Gerald B (2016) Diffusion of uncharged solutes through human nail plate. Pharm Dev Technol 21:255-60
Chantasart, Doungdaw; Hao, Jinsong; Li, S Kevin (2013) Evaluation of skin permeation of ?-blockers for topical drug delivery. Pharm Res 30:866-77
Smith, Kelly A; Hao, Jinsong; Li, S Kevin (2011) Effects of organic solvents on the barrier properties of human nail. J Pharm Sci 100:4244-57
Ibrahim, Sarah A; Li, S Kevin (2010) Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int J Pharm 383:89-98
Ibrahim, Sarah A; Li, S Kevin (2010) Efficiency of fatty acids as chemical penetration enhancers: mechanisms and structure enhancement relationship. Pharm Res 27:115-25
Smith, Kelly A; Hao, Jinsong; Li, S Kevin (2010) Influence of pH on transungual passive and iontophoretic transport. J Pharm Sci 99:1955-67
Hao, Jinsong; Smith, Kelly A; Li, S Kevin (2010) Time-dependent electrical properties of human nail upon hydration in vivo. J Pharm Sci 99:107-18
Xu, Qingfang; Ibrahim, Sarah A; Higuchi, William I et al. (2009) Ion-exchange membrane assisted transdermal iontophoretic delivery of salicylate and acyclovir. Int J Pharm 369:105-13

Showing the most recent 10 out of 32 publications