Perioperative stroke remains a major risk during surgery. Volatile anesthetics protect against experimental brain ischemia but the mechanism is not defined. We hypothesize that volatile anesthetics potentiate GABAergic neurotransmission and enhance CI- influx. This hyperpolarizes neurons delaying time to ischemic depolarization and Ca2++ influx. This hypothesis is derived from observations that volatile anesthetics potentiate GABAA receptors and bicuculline, a GABAA antagonist, reverses isoflurane protection in vitro. We also hypothesize that volatile anesthetic GABAergic properties are more important to protection than glutamate receptor antagonistic properties. We propose these Specific Aims: 1) Define a dose-response for isoflurane protection during rat forebrain ischemia/Compare with efficacy of muscimol, a GABAA receptor agonist/Compare with time to onset of ischemic depolarization and pre-ischemic cerebral metabolic rate; 2) Determine if isoflurane neuroprotection against severe forebrain ischemia is permanent; 3) Compare the relative neuroprotective effect of selective NMDA/AMPA receptor antagonism to isoflurane, which also possesses GABAergic potentiation; 4) Determine the role of GABAA potentiation in isoflurane protection against severe forebrain ischemia.
For Specific Aim #4, we will examine: a) if isoflurane protection against forebrain ischemia or striatal NMDA microinjections is reversed by GABAA antagonists (flurothyl, bicuculline, flumazenil), b) if isoflurane delays time to ischemia induced Ca2++ influx and if this is reversed by GABAA antagonists, c) if correction for this delay, by extending ischemia duration, equivalently reverses neuroprotection, d) effects of GABAA beta subunit-targeted deletion (knockout) or striatal antisense oligonucleotide microinjection on in vivo isoflurane protection, e) the extent to which isoflurane provides protection in organotypic hippocampal slices against NMDA excitotoxicity or oxygen/glucose deprivation and respective effects on CI- uptake, f) the extent to which this is reversed by antagonists of the GABAA, GABAB, and strychnine sensitive glycine receptors, and g) relationships between isoflurane and GABAA antagonists on CI- and Ca ++uptake in NMDA stimulated synaptoneurosomes. We believe that GABAAergic pharmacologic properties of volatile anesthetics known to be critical for anesthesia are the same properties that confer cerebral protection.
Showing the most recent 10 out of 11 publications