The objective of this research is to assess the contribution of DMA-mediated transposons in shaping the genomes of humans and other primates. The movement and accumulation of DMA transposons have been shown to provoke a wide spectrum of mutations, including gross chromosomal rearrangements, in diverse eukaryotic species and has been regarded as a potential source of instability in the human genome. However, the evolutionary history and amplification dynamics of DMA transposons have not been thoroughly investigated for any mammalian species and it is unknown whether any sources of active transposase resides in the human genome. The first goal of this project is to obtain an in-depth view of the history and distribution of DMA transposon populations residing in the human genome and evaluate their impact in primate genome evolution. As a first step toward this goal, we have determined that at least ~20% of the ~340,000 DMA transposons currently residing in our genome have inserted during the primate radiation. We will perform a multi-species genome- wide analysis of the chromosomal distribution and molecular evolution of primate-specific DMA transposons using computational tools and assess experimentally their contribution to genetic diversity in primates.
The second aim of this research is to assess the enzymatic activities of two transposases, MAR and PGBD3, which are potentially expressed in several human tissues and were identified as being among the most recently active in the human genome. We will combine comparative and evolutionary sequence analyses to in vitro and in vivo assays to test whether these proteins (or other candidate identified in the course of this research) have retained their catalytic activities. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM077582-02
Application #
7343233
Study Section
Genetic Variation and Evolution Study Section (GVE)
Program Officer
Portnoy, Matthew
Project Start
2007-02-01
Project End
2012-01-31
Budget Start
2008-02-01
Budget End
2009-01-31
Support Year
2
Fiscal Year
2008
Total Cost
$157,250
Indirect Cost
Name
University of Texas Arlington
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
064234610
City
Arlington
State
TX
Country
United States
Zip Code
76019
Pastuzyn, Elissa D; Day, Cameron E; Kearns, Rachel B et al. (2018) The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell 172:275-288.e18
Gilbert, Clément; Feschotte, Cédric (2018) Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr Opin Genet Dev 49:15-24
Kapusta, Aurélie; Suh, Alexander; Feschotte, Cédric (2017) Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A 114:E1460-E1469
Jangam, Diwash; Feschotte, Cédric; Betrán, Esther (2017) Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet 33:817-831
Venner, Samuel; Miele, Vincent; Terzian, Christophe et al. (2017) Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biol 15:e2001536
Adema, Coen M; Hillier, LaDeana W; Jones, Catherine S et al. (2017) Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun 8:15451
Chuong, Edward B; Elde, Nels C; Feschotte, Cédric (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71-86
Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra et al. (2016) Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genomics 17:344
Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E et al. (2016) Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife 5:
Malfavon-Borja, Ray; Feschotte, Cédric (2015) Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J Virol 89:4047-50

Showing the most recent 10 out of 51 publications