The long term goal of this project is to engineer photonic probes to enable biological discovery. This proposal represents an integral approach by combining molecular design, organic synthesis, optogenetics, and advanced fluorescence microscopy to develop fluorescent probes and imaging techniques, and to apply them to study an important function of gap junction coupling: how gap junction intercellular communication mediates synchronized cell secretion. To this end, we will first develop a new class of fluorescent probes for imaging the dynamics of regulated exocytosis with very high sensitivity and spatiotemporal resolution. The development is based on the observation that a number of secretory cells, including pancreatic islet beta cells, contain a high level of zinc ion (Zn2+) in their secretory granules. Upon stimulation, these cells release the contents of their secretory granules into extracellular medium, during which Zn2+ is co-released. By engineering zinc sensors to specifically report local Zn2+ rise near plasma membranes, we are able to monitor Zn2+ granule release continuously at cellular and subcellular resolution. To examine how gap junction coupling regulates synchronized secretion, we will apply the technique of optogenetics to control the membrane excitability, and to integrate the method of photo-activation with zinc imaging. Combined with pharmacological and genetic approaches to manipulate cell coupling strength, we will investigate how gap junction coupling synchronizes cell secretion. Finally, to characterize how cells coordinate their secretory activity in physiological preparations or in tissues where normal cell-cell contact is maintained, we will use imaging methods of high spatial selectivity, including two photon laser scanning microscopy and spinning disk confocal microscopy, to examine Zn2+ granule release in three dimensions at cellular and subcellular resolution. New probes and methods developed here should have broad applications in cellular and neuronal biology and in different biological systems.

Public Health Relevance

Abnormal cell coupling has been implicated in a number of diseases including cardiac arrhythmia, deafness, neuronal demyelination, and cataracts. Understanding mechanisms regulating cell junctional communication and its functions remains a significant biological challenge which has important implications in both health and disease. The focus of this proposal is to develop new imaging probes and techniques to study how gap junction coupling coordinates cell secretion.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM077593-07
Application #
8475612
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Deatherage, James F
Project Start
2006-06-01
Project End
2016-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
7
Fiscal Year
2013
Total Cost
$322,214
Indirect Cost
$119,564
Name
University of Texas Sw Medical Center Dallas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Xu, Yan; Chen, Yan; Li, Daliang et al. (2017) TargetLink, a new method for identifying the endogenous target set of a specific microRNA in intact living cells. RNA Biol 14:259-274
Li, Wen-Hong (2017) Probes for monitoring regulated exocytosis. Cell Calcium 64:65-71
Kim, Jinrang; Okamoto, Haruka; Huang, ZhiJiang et al. (2017) Amino Acid Transporter Slc38a5 Controls Glucagon Receptor Inhibition-Induced Pancreatic ? Cell Hyperplasia in Mice. Cell Metab 25:1348-1361.e8
Mitchell, Ryan K; Hu, Ming; Chabosseau, Pauline L et al. (2016) Molecular Genetic Regulation of Slc30a8/ZnT8 Reveals a Positive Association With Glucose Tolerance. Mol Endocrinol 30:77-91
Kusminski, Christine M; Chen, Shiuhwei; Ye, Risheng et al. (2016) MitoNEET-Parkin Effects in Pancreatic ?- and ?-Cells, Cellular Survival, and Intrainsular Cross Talk. Diabetes 65:1534-55
Yang, Song; Li, Wen-Hong (2016) Tracking Dynamic Gap Junctional Coupling in Live Cells by Local Photoactivation and Fluorescence Imaging. Methods Mol Biol 1437:181-91
Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei et al. (2016) Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate. Proc Natl Acad Sci U S A 113:E5464-71
Li, Daliang; Huang, ZhiJiang; Chen, Shiuhwei et al. (2015) GLP-1 Receptor Mediated Targeting of a Fluorescent Zn(2+) Sensor to Beta Cell Surface for Imaging Insulin/Zn(2+) Release. Bioconjug Chem 26:1443-50
Li, Daliang; Liu, Lin; Li, Wen-Hong (2015) Genetic targeting of a small fluorescent zinc indicator to cell surface for monitoring zinc secretion. ACS Chem Biol 10:1054-63
Hodson, David J; Mitchell, Ryan K; Marselli, Lorella et al. (2014) ADCY5 couples glucose to insulin secretion in human islets. Diabetes 63:3009-21

Showing the most recent 10 out of 25 publications