Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which kills 2 million people per year and infects nearly one-third of the world's population. Recent outbreaks of multi-drug resistant Mtb strains and the deadly synergy of TB and AIDS stress the need for new and more effective treatments for TB. We propose to characterize the signal transduction mechanism of the PhoR sensor histidine kinase and its cognate response regulator PhoP from Mtb. This two-component system is essential for virulence and intracellular growth of Mtb. Global gene profiling studies indicate that at least 44 genes are positively regulated and 70 genes are negatively regulated by PhoP-PhoR. Therefore, this signaling system must play an important role in adaptation of the pathogen to its intracellular environments, making the PhoP-PhoR system a potential target for novel anti-tuberculosis drugs. However, no structural data is available for this two-component system, and the mechanism of signal transduction is unknown.
The specific aims of this proposal are (1) to determine the crystal structure of PhoP;(2) to define the mechanism of DMA sequence recognition by PhoP;(3) to investigate the role of each domain of PhoR in dimer formation and regulation of the protein activity;and (4) to determine crystal structures of truncated domains and the full-length PhoR protein. Toward achieving these aims, we have (i) determined the structure of the C-terminal domain of PhoP and obtained crystals of full-length PhoP;(ii) identified several promoters that bind PhoP and mapped the PhoP binding sites, from which we will identify optimal DMA sequences for structural determination of PhoP-DNA complexes;and (iii) purified full-length PhoR and prepared expression constructs for producing various truncated domains of PhoR. We will use a divide-and-conquer strategy to study the isolated domains in parallel with the full-length proteins. Structural and functional information of separate domains will lead to success in determining the structure of the full-length protein. The structure of intact PhoR will provide the first integral membrane protein structure of a large group of sensor histidine kinases. Results from this research will lead to a detailed molecular mechanism of signal transduction by PhoP-PhoR and thus a better understanding of how the pathogen adapts to intracellular environments. High resolution crystal structures will also provide a basis for the design of better therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM079185-06
Application #
8074565
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Reddy, Michael K
Project Start
2007-07-20
Project End
2014-05-31
Budget Start
2011-06-01
Budget End
2014-05-31
Support Year
6
Fiscal Year
2011
Total Cost
$283,239
Indirect Cost
Name
Henry M. Jackson Fdn for the Adv Mil/Med
Department
Type
DUNS #
144676566
City
Bethesda
State
MD
Country
United States
Zip Code
20817
Xing, Daniel; Ryndak, Michelle B; Wang, Liqin et al. (2017) Asymmetric Structure of the Dimerization Domain of PhoR, a Sensor Kinase Important for the Virulence of Mycobacterium tuberculosis. ACS Omega 2:3509-3517
Wang, Liqin; Xu, Miao; Southall, Noel et al. (2016) A High-Throughput Assay for Developing Inhibitors of PhoP, a Virulence Factor of Mycobacterium tuberculosis. Comb Chem High Throughput Screen 19:855-864
He, Xiaoyuan; Wang, Liqin; Wang, Shuishu (2016) Structural basis of DNA sequence recognition by the response regulator PhoP in Mycobacterium tuberculosis. Sci Rep 6:24442
He, Xiaoyuan; Wang, Shuishu (2014) DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis. Biochemistry 53:8008-20
Menon, Smita; Wang, Shuishu (2011) Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 50:5948-57
Ryndak, Michelle B; Wang, Shuishu; Smith, Issar et al. (2010) The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J Bacteriol 192:861-9
Ryndak, Michelle; Wang, Shuishu; Smith, Issar (2008) PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 16:528-34
Wang, Shuishu; Engohang-Ndong, Jean; Smith, Issar (2007) Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Biochemistry 46:14751-61