The Wnt signal transduction pathway plays a critical role in many aspects of animal development as well as tumorigenesis in humans. The receptors for Wnts (Frizzled receptors) are predicted to contain seven transmembrane domains, reminiscent of G protein coupled receptors. Recently, genetic experiments in Drosophila and cultured mammalian cell experiments have implicated heterotrimeric G proteins in transduction of a Wnt signal. We propose to use biochemical approaches to elucidate the mechanisms by which G proteins transduce a Wnt signal. The proposed experiments take advantage of the capacity of Xenopus egg extracts to biochemically recapitulate complex reactions. Using this system, we recently reconstituted the cytoplasmic canonical arm of the Wnt pathway in order to study Wnt signal transduction in a cell-free system. This work led to a mathematical model of the Wnt pathway as well as a molecular description of how Wnt ligands transduce their signals inside the cell by promoting direct interaction of Dishevelled (Dsh) with the B-catenin degradation complex. We have now reconstituted signaling of the Wnt pathway from the level of G proteins (Goto and God) and we will systematically test other Ga subfamily members for their ability to activate the Wnt pathway in our biochemical system. We have shown that Wnt activation of the pathway by Goco is Dsh dependent, and we will determine whether Dsh interacts directly with Goco and will test Gao's ability to regulate downstream kinase activities. Finally, we propose to assess whether Goto functionally and physically interacts with the Frizzled receptor, Fz2.
Showing the most recent 10 out of 40 publications