A growing body of evidence supports the view that regulatory evolution - the evolution of where and when a gene is expressed - is the primary genetic mechanism behind the modular organization, functional diversification, and origin of novel traits in higher organisms. Most elements regulating gene expression in eukaryotic genomes reside in noncoding DNA (i.e. DNA that does not encode protein). Recent studies suggest that much of the noncoding portion of the Drosophila melanogaster genome is evolutionarily constrained, implying that these regions are important for an organism
Public Health Relevance
Changes in genetic regulation contribute to adaptations in natural populations and influence susceptibility to human diseases (Gilad et al. 2008;Gobbi et al. 2006). Despite their potential phenotypic importance, the selective pressures acting on regulatory processes and gene expression levels in particular are largely unknown. Our research combines computational and experimental approaches to study how natural selection acts on genetic variation underlying both beneficial and detrimental functional differences in gene expression. This work will significantly improve our understanding of biology of human diseases caused by the misexpression of genes.
Showing the most recent 10 out of 18 publications