Actively Controlled and Targeted Single-Molecule Probes for Cellular Imaging Recent advances in microscopic imaging techniques with single fluorescent molecules have led to superresolution information, that is, the locations and shapes of objects in cells have been determined with resolution beyond the standard diffraction limit. These methods may be collectively termed Single-Molecule Active Control Microscopy (SMACM), because single emitting molecules are used as nanometer-scale light sources, and these emitters must be actively turned on and off to be sure that only a few molecules are emitting at any given time. Photoactivatable fluorescent protein fusions have been used for SMACM, but these emitters are large and may perturb the biological system. Though some emitters such as quantum dots provide high photostability, many additional properties are simultaneously required for advanced single-molecule imaging in cells, such as ease of functionalization, control of photophysics and photochemistry, and ease of targeting to specific cellular structures. Organic synthesis can make a huge array of """"""""small"""""""" molecules with multiple tailored functionalities, and the present application makes use of this high degree of flexibility to develop new, targeted single-molecule emitters with active control capabilities This research will attack the problem of 3-D superresolution imaging with three interconnected thrusts which combine the skills of four investigators expert in organic synthesis, single-molecule imaging, chemistry for cellular targeting, and regulatory protein localization in bacterial cells. First, organic synthesis will generate new fluorophores with """"""""turn-on"""""""" capability, where chemical reactivity is used to generate emission only when two protofluorophores are allowed to react, or where secondary photochemical illumination creates a fluorescent molecule in situ. Secondary illumination will also be used to photoswitch molecules on and off for additional control. The utility of the turn-on concept is that fluorescence can more easily be generated only where needed;hence backgrounds are lower. The second thrust involves selective targeting of the fluorescent labels to proteins and RNA in the cell. This will be accomplished by N-terminal cysteine labeling and RNA aptamer generation, respectively. Finally, to validate and challenge the fluorophore development, the new emitters will be used at the single-molecule level to image specific subwavelength structures, both in eukaryotic and in tiny bacterial cells. The results of this research will be to greatly extend the availability of high-resolution probes for cellular imaging at the single-molecule level, thus enabling a much deeper understanding of cellular functions. By providing a large new array of controllable and targeted single-molecule emitters, the ability of the researcher to noninvasively look inside cells will be extended into the nanoscale regime of the single-molecule emitters themselves. Public Health Relevance: The understanding of biological systems is intimately connected with unraveling disease mechanisms, and to understand the operation of the cell, optical imaging has long been an essential method by virtue of its generally noninvasive character, its capacity to assess from a distance, and its ability to observe time- dependent dynamical processes. In the cell, many small molecular machines operate one at a time, therefore scientists are now routinely observing individual single molecules, one by one, to examine the behavior of each without averaging over many inequivalent copies. To observe single molecules in cells at the spatial scale of a few tens of nm, new actively controllable and targetable emitting labels are required, and this proposed research combines the skills of four investigators to design, synthesize, and optimize a large and novel class of molecules for labeling individual proteins and RNA in living cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM086196-03
Application #
7904851
Study Section
Special Emphasis Panel (ZRG1-BST-Q (51))
Program Officer
Deatherage, James F
Project Start
2008-09-30
Project End
2012-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
3
Fiscal Year
2010
Total Cost
$678,189
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Bayas, Camille A; Wang, Jiarui; Lee, Marissa K et al. (2018) Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus. Proc Natl Acad Sci U S A 115:E3712-E3721
Lippert, Anna; Janeczek, Agnieszka A; Fürstenberg, Alexandre et al. (2017) Single-Molecule Imaging of Wnt3A Protein Diffusion on Living Cell Membranes. Biophys J 113:2762-2767
Saurabh, Saumya; Perez, Adam M; Comerci, Colin J et al. (2017) Super-Resolution Microscopy and Single-Protein Tracking in Live Bacteria Using a Genetically Encoded, Photostable Fluoromodule. Curr Protoc Cell Biol 75:4.32.1-4.32.22
Saurabh, Saumya; Perez, Adam M; Comerci, Colin J et al. (2016) Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule. J Am Chem Soc 138:10398-401
Sahl, Steffen J; Lau, Lana; Vonk, Willianne I M et al. (2016) Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation. Q Rev Biophys 49:e2
Cui, Lina; Rao, Jianghong (2015) 2-Cyanobenzothiazole (CBT) condensation for site-specific labeling of proteins at the terminal cysteine residues. Methods Mol Biol 1266:81-92
Milenkovic, Ljiljana; Weiss, Lucien E; Yoon, Joshua et al. (2015) Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc Natl Acad Sci U S A 112:8320-5
Moerner, W E; Shechtman, Yoav; Wang, Quan (2015) Single-molecule spectroscopy and imaging over the decades. Faraday Discuss 184:9-36
Ptacin, Jerod L; Gahlmann, Andreas; Bowman, Grant R et al. (2014) Bacterial scaffold directs pole-specific centromere segregation. Proc Natl Acad Sci U S A 111:E2046-55
Lee, Marissa K; Rai, Prabin; Williams, Jarrod et al. (2014) Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. J Am Chem Soc 136:14003-6

Showing the most recent 10 out of 39 publications