Nitric oxide is a cell-signaling molecule involved in a number of physiological and pathophysiological processes. Modification of cysteine residues by nitric oxide, i.e. S- nitrosation, changes the function of a broad spectrum of proteins. This reaction represents an important post-translational modification that transduces nitric oxide- dependent signals. However, the detection and quantification of S-nitrosation in biological samples remains a challenge because of the lability of the S-nitrosation products: S-nitrosothiols (RSNOs). Our group recently developed a series of new reactions for RSNOs, which include bis-ligation, reductive ligation, and reductive elimination (to form dehydroalanine). These reactions selectively target on RSNOs and convert them to stable/detectable products. Based on control experiments, we hypothesize these reactions can be used to design new methods for the detection of RSNOs. In this project, we plan to pursue the following four Specific Aims: (1) to study bis-ligation based methods for detecting protein S-nitrosation;(2) to study reductive ligation based methods for detecting protein S-nitrosation;(3) to study dehydroalanine formation from S-nitrosocysteines and the applications in the detection of protein S- nitrosation;and (4) to validate the applications of new RSNO detection methods in biological systems. These studies will advance the understanding of the chemical and biological properties of RSNOs and permit studies of S-nitrosation-related nitric oxide signal transducation in complex systems.

Public Health Relevance

S-Nitrosation of protein cysteine residues plays important roles in physiology and pathophysiology, while the detection of S-nitrosation is still a challenge. The research proposed here will provide new insights into the chemistry of S-nitrosation and lead to new techniques for the detection of S-nitrosation in biological samples, which should have great impact on biomedical research.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088226-04
Application #
8537476
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fabian, Miles
Project Start
2010-09-30
Project End
2015-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
4
Fiscal Year
2013
Total Cost
$269,534
Indirect Cost
$72,038
Name
Washington State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Park, Chung-Min; Biggs, Tyler D; Xian, Ming (2016) Proline-based phosphoramidite reagents for the reductive ligation of S-nitrosothiols. J Antibiot (Tokyo) 69:313-318
Biggs, Tyler D; Weerasinghe, Laksiri; Park, Chung-Min et al. (2015) Phosphine Mediated Conjugation of S-Nitrosothiols and Aldehydes. Tetrahedron Lett 56:2741-2743
Park, Chung-Min; Weerasinghe, Laksiri; Day, Jacob J et al. (2015) Persulfides: current knowledge and challenges in chemistry and chemical biology. Mol Biosyst 11:1775-85
Chen, Wei; Rosser, Ethan W; Zhang, Di et al. (2015) A specific nucleophilic ring-opening reaction of aziridines as a unique platform for the construction of hydrogen polysulfides sensors. Org Lett 17:2776-9
Peng, Bo; Chen, Wei; Liu, Chunrong et al. (2014) Fluorescent probes based on nucleophilic substitution-cyclization for hydrogen sulfide detection and bioimaging. Chemistry 20:1010-6
Zhang, Di; Chen, Wei; Kang, Jianming et al. (2014) Highly selective fluorescence off-on probes for biothiols and imaging in live cells. Org Biomol Chem 12:6837-41
Iliuk, Anton B; Arrington, Justine V; Tao, Weiguo Andy (2014) Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications. Electrophoresis 35:3430-40
Zhang, Di; Chen, Wei; Miao, Zhengrui et al. (2014) A reductive ligation based fluorescent probe for S-nitrosothiols. Chem Commun (Camb) 50:4806-9
Yang, Chun-Tao; Zhao, Yu; Xian, Ming et al. (2014) A novel controllable hydrogen sulfide-releasing molecule protects human skin keratinocytes against methylglyoxal-induced injury and dysfunction. Cell Physiol Biochem 34:1304-17
Devarie-Baez, Nelmi O; Bagdon, Powell E; Peng, Bo et al. (2013) Light-induced hydrogen sulfide release from ""caged"" gem-dithiols. Org Lett 15:2786-9

Showing the most recent 10 out of 21 publications