The evolving field of regenerative medicine integrates chemistry, engineering, biology and medicine to repair, replace, or enhance tissue or organ function lost due to disease, injury, or aging. It requires complex approaches to integrate living cells and proper biological signals with 3-dimensional scaffolding materials. The difficulty in designing tissue scaffolds and implants with properties that simultaneously enable their safe delivery / secure fitting to a target tissue and their proper long-term function in physiological environment has been a major roadblock in reducing regenerative medicine concepts to clinical practices. The proposed EUREKA project uses an innovative nanostructured material design platform to develop shape memory tissue scaffolds and implants that possess tunable mechanical strength, defined biochemical microenvironment, and minimally invasive delivery and self-fitting tissue docking capability. In addition to designing high-modality organic-inorganic nanostructured building blocks to encode rich functional information, an innovative strategy for enhancing shape memory behavior through the confinement of polymer chain-chain interactions between rigid nanoparticle anchors is proposed. If validated, this new platform can open a new paradigm for designing high performance shape memory composites for a wide range of applications. By generating patient-specific and defect-specific medical implants and tissue grafts that precisely fit and conform to each individual defects physically and biochemically, it will have paradigm-changing impact on personalized intervention of a broad range of medical conditions ranging from skeletal defects to cardiovascular diseases and stroke. In addition, with the ability to spatially present and temporally release signaling molecules to and from the 3-dimensional scaffolds with defined mechanical cues, these intelligent materials can also enable informative in vitro studies of complex molecular signaling events or serve as valuable 3-dimensional tissue models for drug discovery. Due to the novelty of this concept, its inherent risks, and enormous medical impact and scientific potential, this project is an excellent candidate for the EUREKA funding mechanism. Within the 4-year project period, we expect to generate a library of 3-dimensional shape memory scaffolds with wide-ranging porosities, mechanical strengths, and signaling molecule encapsulation/release characteristics suitable for applications ranging from self-fitting synthetic bone grafts to deployable drug-eluting stents. We will validate the feasibility of this nanostructured material design platform using both in vitro cell culture models and a small animal critical defect model, choosing a weight-bearing shape memory bone tissue scaffold as the initial proof-of-concept application.

Public Health Relevance

The difficulty in designing tissue scaffolds and implants that simultaneously enable their safe delivery / secure fitting to a target tissue and their proper long-term function in physiological environment has been a major roadblock in reducing regenerative medicine concepts to clinical practices. The proposed EUREKA project uses an innovative nanostructured material design platform to develop shape memory tissue scaffolds and implants that possess tunable mechanical strength, defined biochemical microenvironment, and minimally invasive delivery and self-fitting tissue docking capability. If validated, this new platform can lead to the development of patient-specific and defect-specific medical implants and tissue grafts that precisely fit and conform to each individual defects, physically and biochemically. It will have paradigm-changing impact on personalized intervention of a broad range of medical conditions ranging from skeletal defects to cardiovascular diseases and stroke, benefiting millions of Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM088678-01
Application #
7727121
Study Section
Special Emphasis Panel (ZGM1-CBB-7 (EU))
Program Officer
Fabian, Miles
Project Start
2009-09-01
Project End
2013-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
1
Fiscal Year
2009
Total Cost
$328,167
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Orthopedics
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Kutikov, Artem B; Gurijala, Anvesh; Song, Jie (2015) Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior. Tissue Eng Part C Methods 21:229-41
Kutikov, Artem B; Song, Jie (2015) Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 1:463-480
Kutikov, Artem B; Reyer, Kevin A; Song, Jie (2014) Shape Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/Hydroxyapatite Composites. Macromol Chem Phys 215:2482-2490
Xu, Jianwen; Feng, Ellva; Song, Jie (2014) Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range. J Am Chem Soc 136:4105-8
Xu, Jianwen; Feng, Ellva; Song, Jie (2014) Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications. J Appl Polym Sci 131:
Filion, Tera M; Xu, Jianwen; Prasad, Manju L et al. (2011) In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Biomaterials 32:985-91
Xu, Jianwen; Prifti, Fioleda; Song, Jie (2011) A Versatile Monomer for Preparing Well-Defined Functional Polycarbonates and Poly(ester-carbonates). Macromolecules 44:2660-2667
Xu, Jianwen; Song, Jie (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci U S A 107:7652-7