Approximately 8.5 million Alzheimer's disease (AD) patients and a much greater number of senior patients who are vulnerable to AD will need surgical care under anesthesia every year around the world. Anesthesia and surgery have been reported to induce cognitive dysfunction, which AD and senior patients are susceptible to developing. Therefore, it is necessary to identify anesthetics that will (bad) or will not (good) promote AD pathogenesis and cognitive dysfunction, and to elucidate the underlying mechanisms. Our current R01 has established the system and shown the difference between the commonly used anesthetics isoflurane, desflurane, nitrous oxide and propofol on neurotoxicity. However, the underlying mechanisms remain unknown. Consistent with the findings that compounds with low chemical bond energy are unstable and thus can more easily form free radicals (FRs), which contribute to reactive oxygen species (ROS), our preliminary data have shown that isoflurane (with lower bond energy in Chloride-Carbon) but not desflurane (with higher bond energy in Fluoride-Carbon), increases levels of FRs and ROS. In the renewal R01, we will determine whether the difference in bond energy is the molecular basis by which isoflurane, but not desflurane, increases accumulation of FRs and ROS, and induces mitochondrial dysfunction, thereby causing activation of Tau kinase, leading to Tau phosphorylation and consequently learning and memory impairment. We will perform both mechanistic and translational studies by employing chemical and genetic tools through both in vitro (cultured cells, neurons and isolated mitochondria from mice) and in vivo (wild-type, AD transgenic, Tau and cyclophilin D knockout mice) approaches. We will test our hypothesis: isoflurane, but not desflurane, causes mitochondria-associated Tau phosphorylation, which interacts with AD gene mutation-induced Ab elevation, leading to more severe learning and memory impairment in three Specific Aims: 1) to systematically evaluate the effects of isoflurane, desflurane, nitrous oxide and propofol (alone or in combination) on mitochondrial function, Tau levels, and learning and memory in mice; 2) to investigate a chemical bond energy-based mechanism, which may elucidate why isoflurane and desflurane have different neurotoxic effects; 3) to determine the in vivo cause-effect relationship and targeted interventions using Tau and cyclophilin D knockout mice, FRs scavenge Vitamin C, antioxidant N-acetyl-L-cysteine, and mitochondrial permeability transition pore inhibitor cyclosporine A. This proposal aims at investigating an understudied yet important health topic. The anticipated results would: 1) identify so called good and bad anesthetic(s) affecting AD pathogenesis and cognitive function in mice; 2) elucidate new underlying mechanisms of anesthesia neurotoxicity; and 3) determine the strategy of prevention and treatment. These findings would conceptually advance anesthesia neurotoxicity research and promote more studies, including clinical investigation, and ultimately lead to safer anesthesia care and better postoperative outcomes for AD and senior patients.

Public Health Relevance

Our current R01 studies have established the system and shown that the anesthetic isoflurane, but not desflurane, may promote Alzheimer's disease pathogenesis in vitro and in vivo. The proposed research in this renewal R01 will focus on mechanistic and translational studies. We will (1) identity various anesthetics and anesthesia regimens which will or will not promote Alzheimer's disease pathogenesis and induce impairment of learning and memory in wild-type and transgenic mice; (2) investigate the chemical bond energy-based and mitochondria-associated mechanisms of anesthesia neurotoxicity; and (3) determine the in vivo cause-effect relationship and explore the targeted interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088801-09
Application #
9199425
Study Section
Aging Systems and Geriatrics Study Section (ASG)
Program Officer
Cole, Alison E
Project Start
2009-02-01
Project End
2017-12-31
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
9
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Miao, Huihui; Dong, Yuanlin; Zhang, Yiying et al. (2018) Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer's Disease Transgenic Mice. Mol Neurobiol 55:5623-5638
Zhang, Ce; Zhang, Yiying; Shen, Yuan et al. (2017) Anesthesia/Surgery Induces Cognitive Impairment in Female Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 57:505-518
Ni, Cheng; Li, Cheng; Dong, Yuanlin et al. (2017) Anesthetic Isoflurane Induces DNA Damage Through Oxidative Stress and p53 Pathway. Mol Neurobiol 54:3591-3605
Lu, Han; Liufu, Ning; Dong, Yuanlin et al. (2017) Sevoflurane Acts on Ubiquitination-Proteasome Pathway to Reduce Postsynaptic Density 95 Protein Levels in Young Mice. Anesthesiology 127:961-975
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining et al. (2016) Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice. Med Gas Res 6:180-186
Liang, Feng; Zhang, Yiying; Hong, Wooyoung et al. (2016) Correction to Direct Tracking of Amyloid and Tau Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Lett 16:5967
Yuan, Jing; Cui, Guiyun; Li, Wenlu et al. (2016) Propofol Enhances Hemoglobin-Induced Cytotoxicity in Neurons. Anesth Analg 122:1024-30
Vutskits, Laszlo; Xie, Zhongcong (2016) Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 17:705-717
Liang, Feng; Zhang, Yiying; Hong, Wooyoung et al. (2016) Direct Tracking of Amyloid and Tu Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Lett 16:3989-94
Peng, Mian; Zhang, Ce; Dong, Yuanlin et al. (2016) Battery of behavioral tests in mice to study postoperative delirium. Sci Rep 6:29874

Showing the most recent 10 out of 61 publications