The long-term objective of the current application is to elucidate novel molecular networks underlying mammalian meiosis. Meiosis, a process unique to germ cells, involves pairing, synapsis, recombination, and segregation of homologous chromosomes. Genetic abnormalities resulting from meiosis are a leading cause of birth defects and infertility in humans. The structural and functional properties of meiotic chromatin, which undergoes extensive reorganization, are undoubtedly the central theme of meiosis. Despite rapid progress in understanding meiosis, the complex interplay between chromatin organization and meiotic processes (such as synapsis and recombination) remains largely unknown. In particular, the progress in understanding mammalian meiosis has lagged far behind meiotic studies in other model organisms, due to several critical barriers: high cost, long duration, and the lack of sequence conservation of many meiosis-specific proteins across distant species. To overcome these roadblocks, we have developed an innovative proteomics approach to systematically identify a large number of uncharacterized mammalian meiotic chromatin-associated proteins in mice. The current application is to investigate the role of MEIOB, a novel meiosis-specific protein identified in our proteomics screen, in regulating meiotic recombination and chromosomal synapsis in mice. MEIOB is a sequence paralogue of the ubiquitously expressing RPA1. We find that MEIOB binds to single-stranded DNA (ssDNA) and exhibits 3' to 5' ssDNA-specific exonuclease activity. MEIOB forms distinct foci on meiotic chromosomes. In testes, MEIOB forms a complex with RPA and SPATA22. These proteins colocalize in foci on meiotic chromosomes. Furthermore, Meiob-null mutant mice of both sexes exhibit failures in meiotic recombination and chromosomal synapsis, resulting in sterility. Our results strongly support that MEIOB functions at a distinct step -second end capture - in meiotic recombination.
Our specific aims are: 1) to examine promotion of single-stranded DNA annealing by MEIOB and its associated proteins; 2) to determine the requirement of MEIOB ssDNA-binding activity for meiotic recombination in vivo; 3) to elucidate the role of RPA1, a ubiquitously expressed ssDNA-binding protein, in meiotic recombination. Together, our studies will uncover the molecular mechanisms underlying the regulation of meiotic recombination in mammals by two related ssDNA-binding proteins MEIOB and RPA1, and will provide insights into the etiology of infertility and birth defects in humans.

Public Health Relevance

Abnormalities in meiosis are a leading cause of both infertility and birth defects (trisomy and monosomy) in humans. Completion of this project will provide insight into the etiology of infertility and birth defects in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM089893-06
Application #
8900300
Study Section
Integrative and Clinical Endocrinology and Reproduction Study Section (ICER)
Program Officer
Janes, Daniel E
Project Start
2010-05-01
Project End
2016-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
6
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Luo, Mengcheng; Zhou, Jian; Leu, N Adrian et al. (2015) Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet 11:e1004954
Zhou, Jian; Stein, Paula; Leu, N Adrian et al. (2015) Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Hum Mol Genet 24:6505-14
Zhou, Jian; Leu, N Adrian; Eckardt, Sigrid et al. (2014) STK31/TDRD8, a germ cell-specific factor, is dispensable for reproduction in mice. PLoS One 9:e89471
Zhou, Jian; Goldberg, Ethan M; Leu, N Adrian et al. (2014) Respiratory failure, cleft palate and epilepsy in the mouse model of human Xq22.1 deletion syndrome. Hum Mol Genet 23:3823-9
Zhou, Jian; McCarrey, John R; Wang, P Jeremy (2013) A 1.1-Mb segmental deletion on the X chromosome causes meiotic failure in male mice. Biol Reprod 88:159
Luo, Mengcheng; Yang, Fang; Leu, N Adrian et al. (2013) MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination. Nat Commun 4:2788
Zheng, Ke; Wang, P Jeremy (2012) Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 8:e1003038
Yang, Fang; Wei, Qize; Adelstein, Robert S et al. (2012) Non-muscle myosin IIB is essential for cytokinesis during male meiotic cell divisions. Dev Biol 369:356-61
Zhou, Jian; Yang, Fang; Leu, N Adrian et al. (2012) MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet 8:e1002516
Zhou, Jian; Pan, Jieyan; Eckardt, Sigrid et al. (2011) Nxf3 is expressed in Sertoli cells, but is dispensable for spermatogenesis. Mol Reprod Dev 78:241-9

Showing the most recent 10 out of 11 publications