Most drug development targets catalyze phosphoryl-transfer to or from nucleotide triphosphates. Because catalysis changes their conformation, both affinity and selectivity for these targets depend on structural aspects that are changing rapidly precisely as they develop highest affinity. Thus, they are, necessarily, """"""""moving targets"""""""". Many such enzymes also transduce chemical free energy by linking hydrolysis of their purine triphosphate substrates to conformational changes used for cellular work and signaling. These enzymes include many that possess 1/2 folds described by Rossmann. Virtually all use a metal ion for catalysis. Our central hypothesis is that in enzymes whose conformational changes are responsible for free energy transduction the metal acts catalytically if, and only if, conformational changes reposition it. More formally, interactions of the Mg2+ ion from within the active site oppose catalysis, while longer-range interactions drive conformational motions from elsewhere in the protein, acting indirectly to change the Mg2+ coordination so that it can stabilize the chemical transition state. Preliminary work on B. stearothermophilus tryptophanyl-tRNA synthetase, TrpRS, shows conclusively that active-site protein-metal coupling opposes catalysis, in keeping with the hypothesis. To confirm the hypothesis, we seek positive evidence demonstrating synergistic interactions with the metal from a specific and highly conserved packing motif (the D1 Switch) common to all Rossmannoid enzymes (Aim 1). Thermodynamic cycles for several D1 point mutants, assayed with Mg2+ and Mn2+ have demonstrated significant synergistic coupling to the catalytic metal. A complete dataset may also support specific molecular mechanisms for this long-range coupling, thereby strengthening the hypothesis and broadening its impact on understanding molecular mechanisms of free- energy transduction. We discovered in preliminary work that Mn2+ also relaxes specificity of TrpRS for Trp vs. Tyr.
In Aim 2, we will examine D1 (Aim 1) and D3 (specific to the Trp pocket) switch mutants to determine if this effect requires long-range coupling or arises only from properties of the metal. Insight into the mechanism of Mn2+-induced relaxation of specificity may have important implications for understanding the mutagenic affect of Mn2+ in polymerases. Finally, TrpRS also provides a superb model system to test whether or not incomplete factorial experimental design can reduce the total number of experiments necessary to parameterize predictive models for how allosteric protein functions change with combinatorial mutations (Aim 3). If we can draw valid, useful conclusions about the complex behavior of the D1 Switch from a small subset of the full factorial design of 127 genotypes, using similar innovative designs will enhance the experimental characterization of both related (a similar switch exists in CheY) and dissimilar phenomena.

Public Health Relevance

A pervasive and unsolved problem in structural biology is how catalysis of purine triphosphate hydrolysis is coupled to conformational changes necessary for specificity, regulation, signaling, and biomechanics. Our work has raised a new possibility of an unexpected and potentially widespread coupling mechanism whereby Mg2+ can act catalytically if and only if the conformation changes. Testing this hypothesis by combinatorial mutagenesis a widely conserved conformational switching motif in Bacillus stearothermophilus Tryptophanyl-tRNA synthetase will likely establish new mechanistic paradigms linking transition-state stabilization by Mg2+ to domain movement via distributed use of ATP binding energy, with broad relevance to catalysis specificity, and free-energy transduction.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM090406-02
Application #
8136181
Study Section
Macromolecular Structure and Function E Study Section (MSFE)
Program Officer
Hagan, Ann A
Project Start
2010-09-01
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$355,787
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Biochemistry
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Carter Jr, Charles W (2017) High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction. Annu Rev Biophys 46:433-453
Poreba, Marcin; Szalek, Aleksandra; Rut, Wioletta et al. (2017) Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Sci Rep 7:43135
Chandrasekaran, Srinivas Niranj; Das, Jhuma; Dokholyan, Nikolay V et al. (2016) A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms. Struct Dyn 3:012101
Williams, Tishan L; Yin, Yuhui W; Carter Jr, Charles W (2016) Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based. J Biol Chem 291:255-65
Carter Jr, Charles W (2014) Urzymology: experimental access to a key transition in the appearance of enzymes. J Biol Chem 289:30213-20
Li, Li; Carter Jr, Charles W (2013) Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. J Biol Chem 288:34736-45
Weinreb, Violetta; Li, Li; Carter Jr, Charles W (2012) A master switch couples Mg²?-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA Synthetase. Structure 20:128-38
Cammer, Stephen; Carter Jr, Charles W (2010) Six Rossmannoid folds, including the Class I aminoacyl-tRNA synthetases, share a partial core with the anti-codon-binding domain of a Class II aminoacyl-tRNA synthetase. Bioinformatics 26:709-14
Weinreb, Violetta; Li, Li; Campbell, Cassandra L et al. (2009) Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects. Structure 17:952-64