A major current focus of modern structural biology is the determination of the structures of macromolecular assemblies and machines. Such systems are often not amenable to high-resolution x-ray crystallographic techniques. This proposal aims to develop powerful new methods which integrate NMR data, information from homologous structures, cryo electron microscopy data, low resolution x-ray crystallographic data, evolutionary covariance data, and other sources of information to generate models with atomic level accuracy for macromolecular assemblies and machines. With collaborators, the new methodology will be used to solve cutting-edge structural biology problems which cannot be solved by currently available methods. The new methodology will be incorporated into the freely available Rosetta software suite for use throughout the scientific community.
Proteins are the workhorses of living things. The structures of proteins are critical to carrying out their functions. This research will contribute to determining the structures of protein assemblies critical to life and human disease.
Ovchinnikov, Sergey; Park, Hahnbeom; Kim, David E et al. (2018) Protein structure prediction using Rosetta in CASP12. Proteins 86 Suppl 1:113-121 |
Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E et al. (2018) Protein homology model refinement by large-scale energy optimization. Proc Natl Acad Sci U S A 115:3054-3059 |
Alford, Rebecca F; Leaver-Fay, Andrew; Jeliazkov, Jeliazko R et al. (2017) The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J Chem Theory Comput 13:3031-3048 |
Anishchenko, Ivan; Ovchinnikov, Sergey; Kamisetty, Hetunandan et al. (2017) Origins of coevolution between residues distant in protein 3D structures. Proc Natl Acad Sci U S A 114:9122-9127 |
Ovchinnikov, Sergey; Park, Hahnbeom; Varghese, Neha et al. (2017) Protein structure determination using metagenome sequence data. Science 355:294-298 |
Ovchinnikov, Sergey; Park, Hahnbeom; Kim, David E et al. (2016) Structure prediction using sparse simulated NOE restraints with Rosetta in CASP11. Proteins 84 Suppl 1:181-8 |
Park, Hahnbeom; Bradley, Philip; Greisen Jr, Per et al. (2016) Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. J Chem Theory Comput 12:6201-6212 |
DaRosa, Paul A; Ovchinnikov, Sergey; Xu, Wenqing et al. (2016) Structural insights into SAM domain-mediated tankyrase oligomerization. Protein Sci 25:1744-52 |
Park, Hahnbeom; DiMaio, Frank; Baker, David (2016) CASP11 refinement experiments with ROSETTA. Proteins 84 Suppl 1:314-22 |
Ovchinnikov, Sergey; Kim, David E; Wang, Ray Yu-Ruei et al. (2016) Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta. Proteins 84 Suppl 1:67-75 |
Showing the most recent 10 out of 56 publications