N-methyl D-aspartate receptors, are a subtype of glutamate receptors that mediate excitatory signal transmission in the mammalian central nervous system. Their primary function involves converting the chemical signal into an electrical signal, i.e. glutamate binding to an extracellular domain in the receptor triggers the formation of cation permeable transmembrane channels in the receptor. Given the importance of these receptors in mediating a number of physiological processes and the need to modulate their function in disease states, the primary questions are how does the agonist activate the protein and how can this mechanism be modulated. To address this question, we propose to use a combination of spectroscopic and biochemical methods to identify the complete conformational landscape of the agonist binding domain and the N-terminal modulator binding domain, in the presence of agonists and modulators that induce a large spectrum of activity. Our hypothesis based on the structures of the isolated components and the electrophysiological measurements of the NMDA receptor and the closely related AMPA receptors is that the activity of the receptor is controlled by the fraction of the agonist binding domain and the N-terminal domain that are in a closed cleft conformation in the receptor. We propose to test this hypothesis by using single molecule and ensemble FRET investigations to probe the conformational changes, which will then be correlated to functional consequences as determined by single channel and whole cell current recordings. Additionally, we hypothesize that the negative cooperativity between the agonist glycine and glutamate is mediated by the interface contacts within and across the dimers, in the dimer of dimer structure of the receptor. To test this hypothesis we will investigate the effect of stabilizing and destabilizing the dimer interface as well as the inter dimer interface in the agonist binding domain on the function as measured by the rates of agonist dissociation. The function based studies will be further corroborated structurally by measuring distance changes across the subunit using LRET. These functional and structural investigations will provide a comprehensive understanding of the mechanism by which agonists and modulators mediate NMDA receptor function.

Public Health Relevance

NMDA receptors are a subtype of the glutamate receptor that mediate excitatory responses in the human central nervous system, and play an important role in controlling the cognitive and motor responses. Here we propose to determine the mechanistic and structural changes that underlie the activation and modulation of the function of the NMDA receptors. These investigations will provide insight at a molecular level as to how NMDA receptor function can be altered and hence aid in the treatment of the clinical conditions associated with it. .

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM094246-03
Application #
8474787
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Dunsmore, Sarah
Project Start
2011-09-30
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$284,811
Indirect Cost
$36,246
Name
University of Texas Health Science Center Houston
Department
Biochemistry
Type
Schools of Medicine
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Yanez Orozco, Inna S; Mindlin, Frank A; Ma, Junyan et al. (2018) Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat Commun 9:3724
Dolino, Drew M; Chatterjee, Sudeshna; MacLean, David M et al. (2017) The structure-energy landscape of NMDA receptor gating. Nat Chem Biol 13:1232-1238
Ma, Junyan; Yanez-Orozco, Inna S; Rezaei Adariani, Soheila et al. (2017) High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. J Vis Exp :
Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja et al. (2017) Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation. J Biol Chem 292:1613-1624
Dolino, Drew M; Rezaei Adariani, Soheila; Shaikh, Sana A et al. (2016) Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor. J Biol Chem 291:16175-85
Cooper, David R; Dolino, Drew M; Jaurich, Henriette et al. (2015) Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET. Biophys J 109:66-75
Vitrac, Heidi; MacLean, David M; Jayaraman, Vasanthi et al. (2015) Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc Natl Acad Sci U S A 112:13874-9
Sirrieh, Rita E; MacLean, David M; Jayaraman, Vasanthi (2015) A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc. J Gen Physiol 146:173-81
Kisley, Lydia; Landes, Christy F (2015) Molecular approaches to chromatography using single molecule spectroscopy. Anal Chem 87:83-98
Sirrieh, Rita E; MacLean, David M; Jayaraman, Vasanthi (2015) Subtype-dependent N-methyl-D-aspartate receptor amino-terminal domain conformations and modulation by spermine. J Biol Chem 290:12812-20

Showing the most recent 10 out of 31 publications