Non-Hodgkin lymphoma (NHL) is a prevalent cancer with an estimated 70,800 cases predicted to be diagnosed in the United States in 2014, with the incidence doubling since 1980. Although treatments for NHLs greatly improved following the FDA approval of rituximab, refractive malignancies still occur that are nonresponsive to current therapies in about half of all patients, indicating that improved treatment strategies are needed. One of the most reliable biomarkers and therapeutic targets for B cell NHL is CD20, which is a non-internalizing antigen that remains on the cell surface when bound to a complementary antibody. The crosslinking of CD20-bound antibodies with a secondary antibody results in apoptosis. The overall goal of this project is to generate new, drug-free macromolecular therapeutics for improved treatment of NHL. A new apoptosis induction system is proposed based on the biorecognition of two complementary morpholino oligonucleotides at the cell surface, crosslinking of CD20 antigens and initiation of apoptosis. The system is composed of a pair of complementary morpholino oligonucleotides; Fab' fragment of the 1F5 anti-CD20 antibody; and HPMA copolymer. One oligonucleotide (MORF) is conjugated to the Fab' fragment, the other (cMORF) is conjugated in multiple grafts to polyHPMA. Indeed, the exposure of CD20+ Raji B cells to Fab'- MORF conjugate resulted in the decoration of the cell surface with multiple copies of MORF via antigen- antibody fragment biorecognition. Further exposure of the MORF decorated cells to HPMA copolymer grafted with multiple copies of cMORF (P-(cMORF) x) resulted in oligonucleotide hybridization and formation of MORF-cMORF heterodimers on the cell surface. This second biorecognition event induced crosslinking of CD20 receptors and triggered apoptosis of B cells. The structure of nanoconjugates will be optimized based on the structure and length of oligonucleotide sequences; molecular weight of backbone degradable HPMA- based carrier; number of grafts per macromolecule; spacing of grafts along the macromolecule; use of flexible spacer separating the cMORF grafts and backbone and/or MORF and Fab'. The system will be validated based on data on five cell lines with varying degree of CD20 expression: Raji, Daudi, Ramos, Namalwa, and DG-75. The efficacy of drug-free macromolecular therapeutics will be evaluated on three NHL animal models using lymphoma cells with different phenotype: Raji, SUDHL4, and Z138. For imaging studies luciferase expressing Raji-luc cells will be used. Body distribution, impact of the dose and frequency of administration and time lag between the administrations of two nanoconjugates on the efficacy of treatment will be evaluated with the aim to select leading compound(s) and optimal treatment modalities. The optimized conjugates will be evaluated on cells isolated from patients with clinically common NHLs that express CD20: chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and follicular lymphoma. This will permit to identify subsets of patients suitable for the new therapy.

Public Health Relevance

The proposal presents a new paradigm for apoptosis induction based on oligonucleotide hybridization at the cell surface. This novel approach will be developed into a new class of drug-free macromolecular therapeutics suitable for the treatment of non-Hodgkin's lymphoma.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM095606-06
Application #
9116171
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Okita, Richard T
Project Start
2011-07-01
Project End
2019-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
6
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Utah
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Li, Lian; Yang, Jiyuan; Wang, Jiawei et al. (2018) Amplification of CD20 Cross-Linking in Rituximab-Resistant B-Lymphoma Cells Enhances Apoptosis Induction by Drug-Free Macromolecular Therapeutics. ACS Nano 12:3658-3670
Li, Lian; Yang, Jiyuan; Wang, Jiawei et al. (2018) Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromol Biosci 18:
Zhang, Libin; Fang, Yixin; Yang, Jiyuan et al. (2017) Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. J Control Release 263:139-150
Pelaz, Beatriz; Alexiou, Christoph; Alvarez-Puebla, Ramon A et al. (2017) Diverse Applications of Nanomedicine. ACS Nano 11:2313-2381
Hartley, Jonathan M; Zhang, Rui; Gudheti, Manasa et al. (2016) Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. J Control Release 231:50-9
Yang, Jiyuan; Kope?ek, Jind?ich (2016) Design of smart HPMA copolymer-based nanomedicines. J Control Release 240:9-23
Zhang, Rui; Yang, Jiyuan; Zhou, Yan et al. (2016) N-(2-Hydroxypropyl)methacrylamide Copolymer-Drug Conjugates for Combination Chemotherapy of Acute Myeloid Leukemia. Macromol Biosci 16:121-8
Chu, Te-Wei; Kope?ek, Jind?ich (2015) Drug-Free Macromolecular Therapeutics--A New Paradigm in Polymeric Nanomedicines. Biomater Sci 3:908-22
Chu, Te-Wei; Feng, Jiayue; Yang, Jiyuan et al. (2015) Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation. J Control Release 220:608-16
Hartley, Jonathan M; Chu, Te-Wei; Peterson, Eric M et al. (2015) Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates. Chembiochem 16:1725-9

Showing the most recent 10 out of 23 publications