Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase that regulates diverse pathways and cellular processes. Deregulation of PP2A is associated with many types of cancers and Alzheimer's Disease. PP2A is highly regulated at two major levels: trimeric holoenzyme controls substrate specificity; modulation of active site conformation regulates the level of enzyme activity. Our recent advance in understanding PP2A-specific methyltransferase LCMT-1 shows that PP2A methylation, a modification that enhances holoenzyme assembly, is stimulated by PP2A's phosphatase activity. Our studies further suggest compelling mechanisms for PP2A inhibitory protein a4 and PP2A phosphatase activator (PTPA), and point to hierarchy controls and a linear pathway of holoenzyme biogenesis: partially-folded PP2A is stabilized by a4 in an inactive form, and converted to an active form by PTPA; activated PP2A is then selectively methylated and enhanced to form substrate-specific holoenzymes. We recently made key breakthrough in crystallization of PP2A bound to a4 and PTPA, the highly dynamic complexes with highly regulated interactions. The research proposed here will combine x-ray crystallography with biochemistry, biophysics, yeast genetics, and cell biology to determine how a4, PTPA and PP2A methylation control PP2A structure and function to precisely drive holoenzyme biogenesis. We will determine the high-resolution structure of the PP2A-a4 complex, and address how their interaction controls PP2A stability and affects cell survival (Aim 1). We will determine the structural basis for the chaperone function of PTPA to the PP2A active site to gain insight into PP2A activation, controls of catalytic metal loading and substrate preferences, and elucidate mechanisms of PTPA in PP2A activation and cell survival (Aim 2). We will determine how defects in a4 and PTPA affect subsequent steps of holoenzyme biogenesis, and decipher the role of methylation in controlling holoenzyme structure, conformation and stability (Aim 3). These studies will reveal compelling mechanisms and hierarchy controls of holoenzyme biogenesis that restrict ambiguous phosphatase activity and ensure formation of active holoenzymes, which has a fundamental impact on cell cycle, survival, and drug sensitivity.

Public Health Relevance

This proposal addresses critical gaps of our knowledge in a highly challenging and dynamic aspect of PP2A regulation, highlighting novel compelling mechanisms and hierarchy controls of holoenzyme biogenesis. This study will fundamentally advance our understanding of PP2A regulation, and provide long-awaited structural bases, novel principles and strategies of targeting PP2A that would benefit treatment of human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM096060-04
Application #
8789167
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Dunsmore, Sarah
Project Start
2012-01-15
Project End
2016-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
4
Fiscal Year
2015
Total Cost
$264,540
Indirect Cost
$81,556
Name
University of Wisconsin Madison
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Seok, Seung-Hyeon; Ma, Zhi-Xiong; Feltenberger, John B et al. (2018) Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). J Biol Chem 293:1994-2005
Guo, Feng; Wlodarchak, Nathan; Menden, Patrick et al. (2018) Purification of Target Proteins from Native Tissues: CCT Complex from Bovine Testes and PP2Ac from Porcine Brains. Methods Mol Biol 1788:73-88
Zhang, Lingdi; Zhou, Hengbo; Li, Xueni et al. (2018) Eya3 partners with PP2A to induce c-Myc stabilization and tumor progression. Nat Commun 9:1047
Wu, Cheng-Guo; Chen, Hui; Guo, Feng et al. (2017) PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discov 3:17027
Wu, Cheng-Guo; Zheng, Aiping; Jiang, Li et al. (2017) Methylation-regulated decommissioning of multimeric PP2A complexes. Nat Commun 8:2272
Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li et al. (2017) Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc Natl Acad Sci U S A 114:5431-5436
Kong, G; Chang, Y-I; Damnernsawad, A et al. (2016) Loss of wild-type Kras promotes activation of all Ras isoforms in oncogenic Kras-induced leukemogenesis. Leukemia 30:1542-51
Wlodarchak, Nathan; Xing, Yongna (2016) PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol 51:162-84
Kim, Hyunjung; Guo, Feng; Brahma, Sarang et al. (2014) Centralspindlin assembly and 2 phosphorylations on MgcRacGAP by Polo-like kinase 1 initiate Ect2 binding in early cytokinesis. Cell Cycle 13:2952-61
Kotlo, Kumar; Xing, Yongna; Lather, Sonia et al. (2014) PR65A phosphorylation regulates PP2A complex signaling. PLoS One 9:e85000

Showing the most recent 10 out of 18 publications