Transcription activator-like (TAL) effector domains were recently discovered to be DNA binding domains. Based on the reported DNA recognition features of the these domains, long arrays of repeats that each recognize one base pair using only two variable amino acids, the structure of this DNA binding domain is unlike any that have been previously described. As such, the protein fold and structural features responsible for specific DNA recognition are highly novel and worthy of elucidation for their own merits. However, the seeming simple recognition code and apparent recognition of a wide spectrum of sequences has important implications as a scaffold for engineering new DNA binding proteins. TAL domains appear to be even more flexible in their recognition properties than zinc fingers (ZFs), the engineering of which have had transformative impact in the areas of gene regulation, genome engineering, genetically modified organisms, and gene therapy. Despite their successes, the difficultly of engineering high-quality ZFs represents a significant bottleneck to their widespread application. We hypothesize that TAL domains will have superior performance characteristics compared to the gold-standard ZF domains for engineering novel DNA- binding proteins. We will test our hypothesis using a combined computational and biochemical approach to examine the protein fold and repeat assembly (Aim 1), elucidate the mechanism and extent of DNA recognition (Aim 2), and investigate the potential of TAL domains for the creation of sequence-specific tools for gene regulation and genome engineering (Aim 3). If successful, this study will provide insights into the structure and function of a novel DNA-binding domain, and an understanding of how those insights can be applied to create tools for genetic modification that would be more broadly accessible and of greater general utility than current methods. KEY WORDS Protein-nucleic acid interactions, engineered zinc fingers, ab initio modeling, protein structure, protein folding, structure-function relationship, genome engineering, gene therapy, computational design.

Public Health Relevance

Over the past two decades, proteins have been engineered to regulate and make precise changes to the DNA of living cells, leading to transformative advances in our ability to study and treat human diseases. These methods are based on the ability to reprogram the DNA binding specificity of zinc finger proteins, which is difficult and consequently has restricted their use. Here we will explore the newly discovered TAL DNA binding motif that seems to overcome these limitations, which should enable greater access to more powerful tools for medical research and therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM097073-03
Application #
8449290
Study Section
Therapeutic Approaches to Genetic Diseases (TAG)
Program Officer
Preusch, Peter C
Project Start
2011-04-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
3
Fiscal Year
2013
Total Cost
$268,664
Indirect Cost
$85,314
Name
University of California Davis
Department
Biochemistry
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Habrian, Chris; Chandrasekhara, Adithi; Shahrvini, Bita et al. (2016) Inhibition of Escherichia coli CTP Synthetase by NADH and Other Nicotinamides and Their Mutual Interactions with CTP and GTP. Biochemistry 55:5554-5565
Fink, Kyle D; Deng, Peter; Gutierrez, Josh et al. (2016) Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts. Cell Transplant 25:677-86
O'Geen, Henriette; Yu, Abigail S; Segal, David J (2015) How specific is CRISPR/Cas9 really? Curr Opin Chem Biol 29:72-8
O'Geen, Henriette; Henry, Isabelle M; Bhakta, Mital S et al. (2015) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res 43:3389-404
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P et al. (2014) Conformational elasticity can facilitate TALE-DNA recognition. Adv Protein Chem Struct Biol 94:347-64
Lockwood, Sarah H; Guan, Anna; Yu, Abigail S et al. (2014) The functional significance of common polymorphisms in zinc finger transcription factors. G3 (Bethesda) 4:1647-55
Barrilleaux, Bonnie L; Burow, Dana; Lockwood, Sarah H et al. (2014) Miz-1 activates gene expression via a novel consensus DNA binding motif. PLoS One 9:e101151
Segal, David J; Meckler, Joshua F (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135-58
Meckler, Joshua F; Bhakta, Mital S; Kim, Moon-Soo et al. (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118-28