Epidithiodiketopiperazine (ETP) natural products are a class of structurally complex fungal metabolites that exhibit biological properties including antiviral, antiproliferative, and antibacterial activities. The goal of the proposed research is to develop new synthetic methods and strategies for the synthesis of dihydrooxepine and pyrrolidinoindoline ETP natural products. The development of efficient chemical syntheses of ETP natural products is expected to facilitate the study of their biological properties, and demands innovative new methods to prepare dihydrooxepine and pyrrolidinoindoline core motifs. The proposed research comprises two projects, the first of which targets the natural products aranotin (2) and MPC1001B (5), and is expected to contribute new transition-metal catalyzed methods for the preparation of dihydrooxepines. In addition, the first comprehensive studies of ETP formation in the presence of a dihydrooxepine moiety will be carried out.
The specific aims are: 1.1) to develop transition metal-catalyzed cycloisomerization reactions to prepare dihydrooxepines; 1.2) to complete a total synthesis of the antiviral natural project aranotin (2); 1.3) to complete a total synthesis of the antiproliferative natural product MPC1001B (5). The second project targets pyrrolidinoindoline ETPs such as 11-deoxybionectin A (8). To this end, a new enantioselective formal [3+2] cycloaddition to prepare pyrrolidinoindolines directly from indoles will be developed.
The specific aims are: 2.1) to develop catalytic asymmetric formal [3+2] cycloaddition reactions to prepare pyrrolidinoindolines; 2.2) to study and elucidate the mechanism of catalytic asymmetric pyrrolidinoindoline formation; 2.3) to complete a total synthesis of 11-deoxybionectin A (8). Synthetic access to ETPs such as 2, 5, and 8, is expected to permit studies aimed at deepening our understanding of the underlying mechanisms of their biological properties. Through collaborations with the City of Hope Cancer Center and the Broad Institute of Harvard and MIT, these natural products and synthetic derivatives will be evaluated as biological probes and potential therapeutics for the study and treatment of cancer and infectious disease. It is anticipated that these studies will result in the development of new chemical reactions, further our fundamental understanding of organic and organometallic chemistry, and contribute valuable information on the chemistry and biology of two distinct families of ETP natural products.

Public Health Relevance

Epidithiodiketopiperazine (ETP) natural products are a structurally diverse group of fungal metabolites that exhibit an array of promising biological properties, including antibiotic, antiviral, and antiproliferative activities. This proposal aims to develop new chemical reactions and synthetic strategies for the chemical synthesis of ETP natural products. These studies will contribute valuable information about the chemistry and biology of ETP natural products, and in so doing, will facilitate the study and treatment of disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM097582-05
Application #
8795728
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Lees, Robert G
Project Start
2011-04-01
Project End
2016-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
5
Fiscal Year
2015
Total Cost
$290,738
Indirect Cost
$100,738
Name
California Institute of Technology
Department
Chemistry
Type
Schools of Engineering
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Xu, Chen; Han, Arthur; Reisman, Sarah E (2018) An Oxidative Dearomatization Approach To Prepare the Pentacyclic Core of Ryanodol. Org Lett 20:3793-3796
Xu, Chen; Han, Arthur; Virgil, Scott C et al. (2017) Chemical Synthesis of (+)-Ryanodine and (+)-20-Deoxyspiganthine. ACS Cent Sci 3:278-282
Suzuki, Naoyuki; Hofstra, Julie L; Poremba, Kelsey E et al. (2017) Nickel-Catalyzed Enantioselective Cross-Coupling of N-Hydroxyphthalimide Esters with Vinyl Bromides. Org Lett 19:2150-2153
Wang, Haoxuan; Regan, Clinton J; Codelli, Julian A et al. (2017) Enantioselective Synthesis of (-)-Acetylapoaranotin. Org Lett 19:1698-1701
Chuang, Kangway V; Kieffer, Madeleine E; Reisman, Sarah E (2016) A Mild and General Larock Indolization Protocol for the Preparation of Unnatural Tryptophans. Org Lett 18:4750-3
Chuang, Kangway V; Xu, Chen; Reisman, Sarah E (2016) A 15-step synthesis of (+)-ryanodol. Science 353:912-5
Daniels, Blake E; Ni, Jane; Reisman, Sarah E (2016) Synthesis of Enantioenriched Indolines by a Conjugate Addition/Asymmetric Protonation/Aza-Prins Cascade Reaction. Angew Chem Int Ed Engl 55:3398-402
Wang, Haoxuan; Reisman, Sarah E (2014) Enantioselective total synthesis of (-)-lansai B and (+)-nocardioazines A and B. Angew Chem Int Ed Engl 53:6206-10
Kieffer, Madeleine E; Chuang, Kangway V; Reisman, Sarah E (2013) Copper-catalyzed diastereoselective arylation of tryptophan derivatives: total synthesis of (+)-naseseazines A and B. J Am Chem Soc 135:5557-60
Ni, Jane; Wang, Haoxuan; Reisman, Sarah E (2013) Direct, Enantioselective Synthesis of Pyrroloindolines and Indolines From Simple Indole Derivatives. Tetrahedron 69:5622-5633

Showing the most recent 10 out of 16 publications