The long-term objective of this research is to identify the origin of neural cell deaths observed in Alzheimer's disease (AD) through investigating molecular details of three types of highly toxic protein assemblies of Alzheimer's ?-amyloid (A?), which are commonly observed in AD. The formation of senile plaques in a brain is a hall mark of Alzheimer's disease (AD);the primary component of the plaque is fibrillar assemblies comprised of A?. Because A? exhibits toxicity through self-assembly into larger aggregated forms (i.e. monomeric A? is non-toxic), it has been long suspected that misfolding of A? resulting in the fibril formation and structural changes of A? via the self-assembly trigger the onset of the toxicity and the neural dysfunctions in AD. Indeed, the toxicity of the aggregated A? is greatly modulated by morphologies of the assembled A?, subtle difference in the sequence, and the presence of particular ligands such as Cu(II). In this research, we will examine atomic-level structures of three distinctive forms of toxic amyloid aggregates for A? by solid-state NMR (SSNMR), which has been used as a primary tool in structural analysis for amyloid fibrils, including those for A?.
In Aim 1, we will examine a popular hypothesis that the toxicity of A? is associated with Cu(II) binding to A? aggregates. It is widely believed that Cu(II)-bound amyloid aggregates may catalyze reactions producing H2O2, which is toxic to neural cells. However, because of the intrinsic heterogeneity of the fibrils, traditional methods in structural biology such as X-ray crystallography and solution NMR are not effective for analysis of the metal-binding structures. With SSNMR, we will examine the location and the mode of Cu(II) binding to A? as well as any structural changes due to binding.
In Aim 2, we target the structure of amyloid fibrils and diffusible subfibrillar aggregates for A?(1-42), which have been poorly characterized, despite their pathogenic importance, because of the extreme difficulties in sample preparation. Molecular structures of these amyloid fibrils and intermediates for A?(1-42) have attracted broad attention since the structures offer insights into designs of new therapies and early detection for AD. We will overcome the sample preparation problems by using a novel sensitivity enhancement method, which minimizes sample amount required for SSNMR. The studies will reveal the first site-specific structural details of highly neurotoxic amyloid fibril and intermediate for A?(1-42) by SSNMR.
In Aim 3, we characterize structure and kinetics in misfolding for E22G A?(1-40), which is a unique pathogenic mutant that promotes formation of subfibrillar aggregates. Our study aims to reveal site-specific conformations for E22G A?(1-40) fibrils and subfibrillar aggregates for the first time. The neural toxicity of the relevant amyloid aggregates will be examined on mouse PC12 cells.

Public Health Relevance

This project provides detailed molecular structure for neurotoxic proteins, which are likely to play central roles in development of Alzheimer's disease. The research will provide insights into rational designs of drugs for Alzheimer's.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM098033-08
Application #
8608544
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Wehrle, Janna P
Project Start
2006-09-01
Project End
2015-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
8
Fiscal Year
2014
Total Cost
$290,399
Indirect Cost
$99,599
Name
University of Illinois at Chicago
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Xiao, Yiling; McElheny, Dan; Hoshi, Minako et al. (2018) Solid-State NMR Studies of Amyloid Materials: A Protocol to Define an Atomic Model of A?(1-42) in Amyloid Fibrils. Methods Mol Biol 1777:407-428
Parthasarathy, Sudhakar; Inoue, Masafumi; Xiao, Yiling et al. (2015) Structural Insight into an Alzheimer's Brain-Derived Spherical Assembly of Amyloid ? by Solid-State NMR. J Am Chem Soc 137:6480-3
Wang, Songlin; Parthasarathy, Sudhakar; Xiao, Yiling et al. (2015) Nano-mole scale sequential signal assignment by (1)H-detected protein solid-state NMR. Chem Commun (Camb) 51:15055-8
Parthasarathy, Sudhakar; Yoo, Brian; McElheny, Dan et al. (2014) Capturing a reactive state of amyloid aggregates: NMR-based characterization of copper-bound Alzheimer disease amyloid ?-fibrils in a redox cycle. J Biol Chem 289:9998-10010
Eigler, Siegfried; Hu, Yichen; Ishii, Yoshitaka et al. (2013) Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5:12136-9
Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka (2013) Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning. Acc Chem Res 46:2127-35
Wang, Songlin; Ishii, Yoshitaka (2012) Revealing protein structures in solid-phase peptide synthesis by 13C solid-state NMR: evidence of excessive misfolding for Alzheimer's ýý. J Am Chem Soc 134:2848-51
Long, Fei; Cho, Wonhwa; Ishii, Yoshitaka (2011) Expression and purification of 15N- and 13C-isotope labeled 40-residue human Alzheimer's ?-amyloid peptide for NMR-based structural analysis. Protein Expr Purif 79:16-24