Clathrin-mediated endocytosis is an evolutionarily ancient and fundamental membrane sorting process. It serves as a conduit to convey (sometimes temporarily) macromolecular cargo from the cell surface for delivery to intracellular organelles within small, membrane-encapsulated transport vehicles. Defects in clathrin- mediated endocytosis are linked to several important human disease states, from hypercholesterolemia and certain cancers to Alzheimer disease. Because endocytic clathrin coats are manufactured only to ferry designated cargo into the cytosol, and because the assembly process fails if cargo loading is defective, understanding the dynamics and regulation of cargo molecule recognition and capture is at the very center of a clearer mechanistic model of this vital process. Certainly, the complexity of cargoes that need to be differentially sorted into the cell is vast, and various, structurally discrete and non-competitive sorting signals operate to fill coated vesicles for each budding event. We have been investigating how this broad array of cargo is recognized, and how this is integrated into the polymeric clathrin coat assembly process that begins the construction of a nascent coat. The guiding central hypothesis is that in addition to the central sorting adaptor, the heterotetrameric AP-2 complex, versatile cargo recognition proteins expand the packaging repertoire. During the past funding period, a significant advance was the use of the zebrafish animal model to show the interrelated operation of AP-2 and one particular clathrin-associated sorting protein (CLASP), designated Fcho1, during early embryonic development. On the basis of discrete embryonic phenotypes following gene silencing, we identified that Fcho1 is necessary for proper bone morphogenetic protein (Bmp) signaling that governs ventral cell fates and axis patterning. By contrast, AP-2 gene silencing leads to a multifaceted, severe and penetrant embryonic failure. The overarching goal of the current application is to build on these findings and delineate how the functional surfaces on AP-2 and Fcho1 permit associations with the requisite binding partners. Through integrated structure?function experiments utilizing biochemical studies, cellular trafficking assays, cell-based imaging and whole animal genetic approaches, we will establish the molecular basis for the operation of these sorting adaptors during development and differentiation. In particular, we will test whether reversible phosphorylation of Tyr888 in the AP-2 ?2 subunit turns CLASP binding on and off, how AP-2 promotes receptor trafficking and signaling during early embryogenesis, investigate the molecular basis for the Fcho1 -homology domain binding to various partner proteins, and test whether Fcho1-dependent delivery of the Bmp receptor Alk8 is necessary for endosomal propagation of R- Smad signaling during embryogenesis. The new information generated is likely to provide novel mechanistic insights and important conceptual advances in the appreciation of clathrin-mediated endocytosis.

Public Health Relevance

Human cells depend on continual remodeling and turnover of the delicate plasma membrane that encapsulates all cellular constituents for normal responsive functioning and long-term maintenance of health. Our proposed studies seek to understand how the major mode of dynamic cell-surface refashioning, designated clathrin-mediated endocytosis, begins at apparently random locations on the plasma membrane, and to identify the critical protein components that select the place where new clathrin-mediated endocytosis events will initiate. This new information may potentially open novel therapeutic approaches to selectively interfere with the internalization of regions of the plasma membrane into the cell interior. !

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM106963-19S1
Application #
9715354
Study Section
Program Officer
Maas, Stefan
Project Start
1998-03-15
Project End
2019-03-31
Budget Start
2016-04-01
Budget End
2019-03-31
Support Year
19
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Muenzner, Julia; Traub, Linton M; Kelly, Bernard T et al. (2017) Cellular and viral peptides bind multiple sites on the N-terminal domain of clathrin. Traffic 18:44-57
Ma, Li; Umasankar, Perunthottathu K; Wrobel, Antoni G et al. (2016) Transient Fcho1/2?Eps15/R?AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding. Dev Cell 37:428-43
Traub, Linton M (2015) F-BAR/EFC Domain Proteins: Some Assembly Required. Dev Cell 35:664-6
Umasankar, Perunthottathu K; Ma, Li; Thieman, James R et al. (2014) A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. Elife 3:
Chakraborty, Souvik; Umasankar, Perunthottathu K; Preston, G Michael et al. (2014) A phosphotyrosine switch for cargo sequestration at clathrin-coated buds. J Biol Chem 289:17497-514
Jha, Anupma; Traub, Linton M (2014) Visualization of clathrin-mediated endocytosis in live Drosophila egg chambers. Methods Mol Biol 1174:349-60
Traub, Linton M; Bonifacino, Juan S (2013) Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 5:a016790