Cholesterol is a major lipid component of the mammalian plasma membrane. Abnormal cholesterol levels have been implicated in several diseases, including cardiovascular diseases, Niemman-Pick type C disease, and Alzheimer's disease, among others; however it is not known how the cholesterol concentration is linked to cellular processes. In particular, the direct involvement of cholesterol in cell regulation through specific interactions with cytosolic proteins has not been thoroughly investigated. We have recently discovered that cholesterol specifically interacts with various cytosolic scaffold protein and regulate their diverse cellular signaling activities. This important finding not only demonstrates that cholesterol can directly interact with major cellular regulatory proteins but also offers excellent systems to investigate the direct correlation between membrane cholesterol levels and cellular activities. We also developed a new fluorescence imaging technology for accurate in situ real-time quantification of membrane lipids. Collectively, our discovery of a new class of cholesterol binding proteins and our new quantitative lipid imaging technology provide us a unique and unprecedented opportunity to systematically study the mechanisms by which cholesterol regulates diverse cellular processes. Our main hypothesis is that the local cholesterol level in the plasma membrane serves as an activation threshold for various cellular processes, including Wnt signaling. The primary objective of this proposed research is to investigate the mechanisms underlying diverse cholesterol-mediated cell regulation. Specifically, we propose to (1) determine how cholesterol regulates Wnt signaling through specific interaction with a scaffold protein, Dvl, (2) establish robust and versatile in situ quantitative imaging of cellular cholesterol, and (3) determine how changes in the local cholesterol level in the plasma membrane mediate canonical Wnt signaling.

Public Health Relevance

Abnormal cholesterol levels have been implicated in several diseases, including cardiovascular diseases, Niemman-Pick type C disease, and Alzheimer's disease, among others. However, little is known about how changes in systemic cholesterol levels affect the cellular function and regulation. We recently discovered that many scaffold proteins playing key roles in diverse cell signaling pathways specifically bind cholesterol and that their cholesterol binding is essential for their cellular function. On the basis of this noveland exciting new finding, we propose to investigate a potential role of cellular cholesterol as a regulatory lipid. Using our innovative lipid sensor technology that allows in situ quantification o cellular lipids including cholesterol, we will test the hypothesis that changes in the local cholesterol level in the plasma membrane mediate specific and diverse cellular responses by modulating specific interaction with various effector proteins. We will focus specifically on how cholesterol regulates canonical Wnt signaling that is a major target for cancer drug development. Our proposed studies are significant because they will answer critically important, but hitherto unexplored, questions regarding the cholesterol-mediated cell regulation and thereby help develop new and more efficient strategies to diagnose, treat, and prevent numerous human diseases caused by dysfunctional cholesterol-dependent cell function and regulation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM110128-03
Application #
9100858
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Chin, Jean
Project Start
2014-07-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Liu, Shu-Lin; Sheng, Ren; Jung, Jae Hun et al. (2017) Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 13:268-274
Sheng, Ren; Jung, Da-Jung; Silkov, Antonina et al. (2016) Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. J Biol Chem 291:17639-50
Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina et al. (2016) SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins. Mol Cell 62:7-20
Francis, Kevin R; Ton, Amy N; Xin, Yao et al. (2016) Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/?-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med 22:388-96
Cho, Wonhwa; Kim, Hyunjin; Hu, Yusi (2016) High-Throughput Fluorometric Assay for Membrane-Protein Interaction. Methods Mol Biol 1376:163-74
Agarwal, Shivani; Kim, Hyunjin; Chan, Robin B et al. (2015) Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity. Nat Commun 6:8745
Kim, Dae Heon; Park, Mi-Jeong; Gwon, Gwang Hyeon et al. (2014) An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. Dev Cell 30:598-609
Liu, Shu-Lin; Sheng, Ren; O'Connor, Matthew J et al. (2014) Simultaneous in situ quantification of two cellular lipid pools using orthogonal fluorescent sensors. Angew Chem Int Ed Engl 53:14387-91
Sheng, Ren; Kim, Hyunjoon; Lee, Hyeyoon et al. (2014) Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 5:4393