The long-term goal of this project is to define the molecular mechanisms that regulate the spatial distribution of organelles in the early secretory pathway and to determine the importance of this architecture to normal membrane trafficking during cell growth and development. Most biosynthetic cargo molecules destined for secretion initiate their journey within specific subdomains of the endoplasmic reticulum (ER). At these locations, COPII-coated carriers are first generated, packaging cargoes for transport to ER-Golgi intermediate compartments (ERGIC), stable organelles that are juxtaposed to the ER. The COPII coat is composed of two multimeric protein complexes, Sec23-Sec24 and Sec13-Sec31, and the small GTPase Sar1. Although these factors are sufficient to reconstitute vesicle budding from chemically defined membranes in vitro, additional proteins are required to promote COPII transport carrier biogenesis and anterograde transport in cells. This proposal focuses on the role of TFG, a metazoan-specific protein required for the normal trafficking of COPII- coated transport carriers. Based on our preliminary results, we hypothesize that TFG facilitates the local retention of ER-derived transport carriers, providing sufficient time for COPII coat disassembly and subsequent fusion with ERGIC membranes. Importantly, mutations in TFG have been implicated in progressive neurodegenerative disease, including hereditary spastic paraplegia (HSP), suggesting a role for COPII-mediated transport in maintaining neuron function.
The specific aims of this renewal application are to: 1) define mechanisms by which TFG regulates anterograde COPII-mediated cargo transport, 2) identify mechanisms by which TFG facilitates neuronal function and maintenance, and 3) determine mechanisms that underlie neurodegeneration observed in rodent models of HSP. Together, the experiments outlined in this proposal will provide fundamental new insights into how the organization of the early secretory pathway promotes the rapid anterograde transport of newly synthesized cargoes in transport carriers, which is necessary for normal human development and neuronal homeostasis.

Public Health Relevance

The directed movement of proteins and membranes between different subcellular locations is a fundamental process required for the proper functioning of all eukaryotic cells. Many neurodegenerative diseases including hereditary spastic paraplegias can be caused by axonal transport defects. The proposed research will determine how membrane trafficking and homeostasis are appropriately regulated, enhancing our fundamental understanding of these processes, which should facilitate the future identification of therapeutic targets for disease intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM110567-05
Application #
9685610
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Ainsztein, Alexandra M
Project Start
2015-03-01
Project End
2021-01-31
Budget Start
2019-04-15
Budget End
2021-01-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Hanna, Michael G; Peotter, Jennifer L; Frankel, E B et al. (2018) Membrane Transport at an Organelle Interface in the Early Secretory Pathway: Take Your Coat Off and Stay a While: Evolution of the metazoan early secretory pathway. Bioessays 40:e1800004
Schenk, Noah A; Dahl, Peter J; Hanna 4th, Michael G et al. (2018) A simple supported tubulated bilayer system for evaluating protein-mediated membrane remodeling. Chem Phys Lipids 215:18-28
Frankel, E B; Audhya, Anjon (2018) ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 74:4-10
Slosarek, Erin L; Schuh, Amber L; Pustova, Iryna et al. (2018) Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation. Cell Rep 24:2248-2260
Cox, Nathan J; Unlu, Gokhan; Bisnett, Brittany J et al. (2018) Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Biochemistry 57:91-107
König, Julia; Frankel, E B; Audhya, Anjon et al. (2017) Membrane remodeling during embryonic abscission in Caenorhabditis elegans. J Cell Biol 216:1277-1286
Frankel, E B; Shankar, Raakhee; Moresco, James J et al. (2017) Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nat Commun 8:1439
Hanna 4th, Michael G; Block, Samuel; Frankel, E B et al. (2017) TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc Natl Acad Sci U S A 114:E7707-E7716
Elsayed, Liena E O; Mohammed, Inaam N; Hamed, Ahlam A A et al. (2016) Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. Eur J Hum Genet 25:100-110
Joo, Joung Hyuck; Wang, Bo; Frankel, Elisa et al. (2016) The Noncanonical Role of ULK/ATG1 in ER-to-Golgi Trafficking Is Essential for Cellular Homeostasis. Mol Cell 62:491-506

Showing the most recent 10 out of 16 publications