Opioids remain the major medication for perioperative and chronic pain management despite their side effects, which include respiratory depression, constipation, addiction and others related to morbidity and mortality in our patients, as well as presenting a significant economic and political burden. Since both the analgesic and side effects are thought to arise from activation of the ?-receptor (MUR), a better understanding of the structural and functional relationships of human MUR will provide clues in addressing this clinical dilemma. In this project, we will engineer water soluble variants of the human mu receptor (wsMUR) based on the newly available crystal structure of murine MUR, investigate the properties of the receptor in the presence or absence of N and C terminus, and establish a system in investigating the direct interaction of an opioid ligand with the receptor without needing radioactive ligands or mammalian cells. There are 2 major aims for this study.
In specific aim 1, we will engineer and study a new generation of wsMUR based on the crystal structure of murine MUR along with our first version of engineered receptor published recently and establish a novel system in investigating the direct interaction of opioid and receptor by taking the advantages of wsMUR and surface plasmon resonance.
In specific aim 2, we will computationally engineer variants of wsMURs by changing wide ranges of surface residues in the transmembrane region to test the following hypotheses: 1) There is a minimal requirement of the number of mutations enabling the human MUR to be expressed in E coli with a reasonable water solubility and comparable properties to its native form~ 2) The receptor may tolerate 35% of the mutations for the residues in the transmembrane portion based on our past experiences of protein engineering on the membrane proteins to maximize water solubility and improve monomeric states for future high resolution protein dynamics studies (i.e. nuclear magnetic resonance) in solution conditions~ 3) Removal of cysteine on the surface of the transmembrane portion of the receptor could reduce disulfide bond induced protein dimerization. This project not only provides various variants of wsMUR for structure function relationship studies, but also yields a novel system that can investigate the direct interaction between opioids and MUR, and offer a significant technology breakthrough. Thus, this project stands to elucidate the molecular mechanisms of MUR and aid in the identification of novel opioid analgesics with reduced side effects, improved pain control, and address issues related to opioid administration and abuse. This group has a track record in engineering water soluble membrane proteins. Professor Saven at the Department of Chemistry is an expert on protein engineering and Professor Liu at the Department of Anesthesiology is an expert on opioid receptors. The preliminary data for all the specific aims are promising.

Public Health Relevance

This project develops alternative tools and approaches investigating the structural and functional relationship between opioids and the human mu receptor. This project will yield water-soluble variants of the mu receptor for structure-function studies in solution conditions and a novel system investigating direct interactions between an opioid ligand and mu receptor without radioactive ligands or the requirement of mammalian cells. The information and new tools derived from this project stand to elucidate the molecular mechanisms of MUR and aid in the identification of novel opioid analgesics with reduced side effects, improved pain control, and address issues related to opioid administration and abuse. Thus, this project has significant implications for public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM111421-03
Application #
9132316
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Cole, Alison E
Project Start
2014-09-05
Project End
2019-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sun, Juan; Zhang, Yan; Lu, Jianfei et al. (2018) Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage. Microcirculation 25:e12442
Zhao, Jing; Eckenhoff, Maryellen F; Sun, Wei-Zen et al. (2018) Stroke 112: A Universal Stroke Awareness Program to Reduce Language and Response Barriers. Stroke 49:1766-1769
Ping, Jinglei; Vishnubhotla, Ramya; Xi, Jin et al. (2018) All-Electronic Quantification of Neuropeptide-Receptor Interaction Using a Bias-Free Functionalized Graphene Microelectrode. ACS Nano 12:4218-4223
Wu, Fei-Xiang; Babazada, Hasan; Gao, Hao et al. (2018) Dezocine Alleviates Morphine-Induced Dependence in Rats. Anesth Analg :
Chen, Stacey; Liu, Geoffrey L; Li, Marilyn M et al. (2017) Effects of Epinephrine on Inflammation-Related Gene Expressions in Cultured Rat Cardiomyocytes. Transl Perioper Pain Med 2:13-19
Ping, Jinglei; Xi, Jin; Saven, Jeffery G et al. (2017) Quantifying the effect of ionic screening with protein-decorated graphene transistors. Biosens Bioelectron 89:689-692
Jiang, Xueying; Orton, Margaret; Feng, Rui et al. (2017) Chronic Opioid Usage in Surgical Patients in a Large Academic Center. Ann Surg 265:722-727
Zhao, Jing; Liu, Renyu (2017) Stroke 1-2-0: a rapid response programme for stroke in China. Lancet Neurol 16:27-28
Zhao, Jing; Liu, Renyu (2017) Stroke 1-2-0: The strategy and video release. Transl Perioper Pain Med 2:1-2
Xi, Chunhua; Liang, Xuan; Chen, Chunhua et al. (2017) Hypoxia Induces Internalization of ?-Opioid Receptor. Anesthesiology 126:842-854

Showing the most recent 10 out of 23 publications