The ability to perform high-throughput, high-purity, multi-parametric cell sorting is extremely important for many biomedical studies and clinical applications. In the past few decades, fluorescence-activated cell sorters have become the gold standard technique in the field. However, current cell sorters suffer from an inability to maintain cell integrity during the cell- sorting process. Conventional cell-sorting processes are reported to significantly reduce cell viability and function (30-70% reduction) for many fragile or sensitive cells such as neurons, stem cells, liver cells, dendritic cells, sperm cells, and even neutrophils from healthy individual. In addition, our recent preliminary results indicate that gene expression can be significantly altered during the cell-sorting process, even for robust cells (such as HeLa cells). These drawbacks significantly limit the usefulness of cell sorters in many biomedical studies and clinical applications and have created many unmet needs. For example, human induced pluripotent stem (iPS) cells have opened a new field for modeling human diseases using human cells directly. They can be extremely useful for drug screening and personalized medicine. However, today it is still impossible to use cell sorters or any other existing methods to isolate undifferentiated iPS cells in a high-throughput, high-purity, and high-cell-integrity manner. This unmet need has significantly hindered progress in stem cell research and therapy. Our objective is to address these unmet needs by demonstrating standing surface acoustic wave (SSAW) based, high-cell-integrity sorters. When compared to conventional sorters, the proposed SSAW cell sorter is substantially smaller and less expensive, and is expected to significantly improve post-sorting cell viability, function, and gene expression for both fragile and robust cells. In particular, we will (1) develop a SSAW-based flow cytometer that achieves sheathless, multi-color, high-throughput single-cell analysis; (2) demonstrate a high-throughput, single-cell deflecting unit using focused interdigital transducers (f-IDTs); (3) establish a fully integrated, SSAW-based cell sorter system proven with human blood samples to outperform a state-of-the-art cell sorter; and (4) demonstrate sorting of induced pluripotent stem (iPS) cells with maintained cell integrity. With unprecedented capabilities to maintain cell integrity, even for fragile cells, our proposed SSAW-based cell sorter will not only become a more compact, affordable, and easy-to-maintain replacement to the existing cell sorters, but also fill many unmet needs in both fundamental biomedical research and clinical diagnosis and therapeutics.

Public Health Relevance

The proposed project is to develop tools that can sort cells accurately while maintaining the highest cell integrity. It addresses many unmet needs and has the potential to transform both fundamental biomedical research (e.g., understanding of malaria) and clinical diagnostics and therapeutics (e.g., stem-cell-based therapies).

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
7R01GM112048-03
Application #
9119032
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Edmonds, Charles G
Project Start
2014-08-01
Project End
2018-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
3
Fiscal Year
2016
Total Cost
$297,776
Indirect Cost
$107,776
Name
Duke University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Wu, Mengxi; Huang, Po-Hsun; Zhang, Rui et al. (2018) Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. Small 14:e1801131
Orbay, Sinem; Ozcelik, Adem; Bachman, Hunter et al. (2018) Acoustic Actuation of in situ Fabricated Artificial Cilia. J Micromech Microeng 28:
Bachman, Hunter; Huang, Po-Hsun; Zhao, Shuaiguo et al. (2018) Acoustofluidic devices controlled by cell phones. Lab Chip 18:433-441
Zhang, Steven Peiran; Lata, James; Chen, Chuyi et al. (2018) Digital acoustofluidics enables contactless and programmable liquid handling. Nat Commun 9:2928
Ren, Liqiang; Yang, Shujie; Zhang, Peiran et al. (2018) Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter. Small 14:e1801996
Huang, Po-Hsun; Chan, Chung Yu; Li, Peng et al. (2018) A sharp-edge-based acoustofluidic chemical signal generator. Lab Chip 18:1411-1421
Bian, Yusheng; Guo, Feng; Yang, Shujie et al. (2017) Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics. Microfluid Nanofluidics 21:
Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir et al. (2017) Acoustic actuation of bioinspired microswimmers. Lab Chip 17:395-400
Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco (2017) Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective. J Fluid Mech 825:600-630
Zhang, Bin; Bian, Yusheng; Ren, Liqiang et al. (2017) Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale. Sci Rep 7:40479

Showing the most recent 10 out of 37 publications