Filamentous fungi produce a vast universe of secondary metabolites (SM), which display a broad range of useful activities for pharmaceutical and agricultural purposes, e.g. antibiotic, immunosuppressant, lipid lowering, or antimicrobial properties. One group of metabolites of particular interest are non-ribosomal peptide synthetase- (NRPS-) derived metabolites which have provided important leads for drug design. However, production of NRPS-based pathways is often very low (or undetectable) under laboratory conditions, in large part due to complex endogenous regulatory networks that control the biosyntheses of these metabolites, which remain, at best, poorly understood. As a result, many gene clusters containing NRPS or NRPS-like genes have no known metabolites (orphan gene clusters), even in well-studied species such as the genetic model Aspergillus nidulans. This R01 proposes in Aim 1 to identify metabolites associated with all remaining orphan NRPS and NRPS-like gene clusters in A. nidulans and the opportunistic pathogen A. fumigatus using an inducible promoter activation strategy coupled with comparative metabolomics based on high-resolution MS and 2D NMR spectroscopy.
In Aim 2 we will utilize a Bacterial Artificial Chromosome (BAC)-based strategy to identify metabolites for all NRPS and NRPS-like gene clusters of A. terreus, an industrially important fungal species. A final goal of this aim is to examine the hypothesis that specific genes contained within a fungal NRPS/NRPS-like cluster may be predictive of the biological activity - and drug discovery potential - of the SM products. Overall, this parallel study of different species and comparison of different expression approaches will significantly advance understanding of NRPS-pathways and the scope of heterologous expression. Moreover, this work will provide advanced fungal lines for the community for SM cluster expression, a comprehensive assessment of A-domain substrate preference for fungal NRPS and an innovative methodology to identify new metabolites for biological evaluation.

Public Health Relevance

Fungi produce small non-ribosomally produced peptides that provide many useful pharmaceutical and antimicrobial properties. This grant will identify and characterize the entire small peptide resource of three of the most highly productive drug producing fungal species.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM112739-01
Application #
8798807
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Gerratana, Barbara
Project Start
2014-12-15
Project End
2018-11-30
Budget Start
2014-12-15
Budget End
2015-11-30
Support Year
1
Fiscal Year
2015
Total Cost
$292,638
Indirect Cost
$67,638
Name
University of Wisconsin Madison
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Khalid, Saima; Baccile, Joshua A; Spraker, Joseph E et al. (2018) NRPS-Derived Isoquinolines and Lipopetides Mediate Antagonism between Plant Pathogenic Fungi and Bacteria. ACS Chem Biol 13:171-179
O'Neill, Erinn M; Mucyn, Tatiana S; Patteson, Jon B et al. (2018) Phevamine A, a small molecule that suppresses plant immune responses. Proc Natl Acad Sci U S A 115:E9514-E9522
Pfannenstiel, Brandon T; Greco, Claudio; Sukowaty, Andrew T et al. (2018) The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genet Biol 120:9-18
Lim, Fang Yun; Won, Tae Hyung; Raffa, Nicholas et al. (2018) Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus. MBio 9:
Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A et al. (2018) Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi. MBio 9:
Pfannenstiel, Brandon T; Zhao, Xixi; Wortman, Jennifer et al. (2017) Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. MBio 8:
Baccile, Joshua A; Spraker, Joseph E; Le, Henry H et al. (2016) Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nat Chem Biol 12:419-24
McClure, Ryan A; Goering, Anthony W; Ju, Kou-San et al. (2016) Elucidating the Rimosamide-Detoxin Natural Product Families and Their Biosynthesis Using Metabolite/Gene Cluster Correlations. ACS Chem Biol 11:3452-3460
Macheleidt, Juliane; Scherlach, Kirstin; Neuwirth, Toni et al. (2015) Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol Microbiol 96:148-62
Wever, Walter J; Bogart, Jonathan W; Baccile, Joshua A et al. (2015) Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4 + 2] cycloaddition. J Am Chem Soc 137:3494-7

Showing the most recent 10 out of 11 publications