Ions are essential components of biomolecular systems. One third of all proteins contain metal ions as integral parts for structural or functiona purposes. Binding of negatively charged phosphate groups is ubiquitously involved in regulation, signal transduction and various other processes. Whereas is a plethora of experimental structural and thermodynamic information about protein-ion systems, our understanding of the mechanism for specific recognition and protein/ion selectivity remains elusive. Computational and theoretical studies of protein-ion systems using classical models are very challenging due to the lack of accurate and yet computationally tractable classical models for simulating ions in proteins. We propose to systematically investigate the binding of divalent metal ions and phosphate containing ligands to proteins using quantum mechanical calculations and classical molecular dynamics simulations. We will rigorously examine the different types of physical forces in protein-ion interactions using quantum mechanical energy decomposition, and develop a new classical model to accurately describe the physical interactions between ions and protein/water environment. With this new classical model, we will obtain quantitative understanding of the thermodynamic driving forces underlying the specificity and selectivity from molecular dynamics simulations. Given the fundamental importance of protein-ion binding, this research will have a broad impact on advancing our scientific knowledge about ions in biomolecular structure and functions. This research will also lead to computational methods and public software tools that will enable accurate prediction of protein-ion binding and ultimately design of new molecules and proteins targeting specific ions.
The proposed research is important to public health because it will lead to the critical understanding how proteins recognize specific metal and molecular ions for structural and functional purposes, and will provide computational tools that facilitate the discovery of new drugs, protein therapeutics and diagnostic biosensors targeting these ions or ion binding sites in the proteins.
Showing the most recent 10 out of 24 publications