Candida albicans is one of the most frequently isolated fungal pathogens of humans. It is a permanent resident of the healthy gastrointestinal microbiome, existing mostly as the yeast form. But when host immunity is impaired, disseminated C. albicans infections can occur with a high mortality rate. A critical virulence attribute of C. albicans is its morphogenetic plasticity. In response to host environmental cues, this fungus can grow as yeast, pseudohyphal, and hyphal forms. Mutants that are defective in hyphal formation display attenuated virulence in animal models of systemic candidiasis. Our long-term goal is to understand the signaling pathways that govern C. albicans morphogenesis. Recent studies from our laboratory show that hyphal development consists of two temporally linked phases, initiation and maintenance. Initiation requires the Ras-cAMP-protein kinase A (PKA) pathway that regulates the rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal development. Maintenance requires the Brg1 transcription factor-mediated promoter chromatin remodeling of hypha-specific genes in response to nutrient limitation in air or stabilization of the Ume6 transcriptional activator under hypoxia and hypercapnia.
Aim 1 will characterize the C. albicans hyphal initiation pathways that are essential for systemic infection. We will study how C. albicans cells integrate signals from N- acetylglucosamine, amino acids and pH to control hyphal initiation programs.
Aim 2 will use mutant screens and genetic analysis to uncover signaling pathways that sense hypoxia, high CO2, and iron depletion to sustain hyphal elongation in systemic infection. This proposal will gain molecular insights into how host signals are sensed by C. albicans to control hyphal development during infection, which is critically important in understanding its pathogenicity. The results of these in-depth investigations will provide new insight into the mechanisms that govern hyphal initiation and maintenance in an important fungal pathogen, and will serve as the foundation for novel therapeutic strategies against C. albicans. Furthermore, the signaling pathways to be examined in this application are likely conserved among diverse fungal pathogens. Data from these studies will provide insight into signaling pathways that govern virulence in other fungi.

Public Health Relevance

Candida has emerged as a significant human pathogen. Development of the next generation of antifungal agents will require a further understanding of the biology of Candida. One critical virulence attribute of Candida albicans is its morphogenetic plasticity. This study will provide molecular mechanisms for how C. albicans controls its morphogenetic program during infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM117111-03S1
Application #
9960864
Study Section
Program Officer
Gaillard, Shawn R
Project Start
2017-02-01
Project End
2021-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Biochemistry
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92617
Wang, Xiongjun; Zhu, Wencheng; Chang, Peng et al. (2018) Merge and separation of NuA4 and SWR1 complexes control cell fate plasticity in Candida albicans. Cell Discov 4:45
Mood, Aaron D; Premachandra, Ilandari Dewage Udara Anulal; Hiew, Stanley et al. (2017) Potent Antifungal Synergy of Phthalazinone and Isoquinolones with Azoles Against Candida albicans. ACS Med Chem Lett 8:168-173
Su, Chang; Lu, Yang; Liu, Haoping (2016) N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi. Nat Commun 7:12916