The ability to produce chiral, non-racemic compounds efficiently is central to both the medical chemistry and process chemistry aspects of pharmaceutical synthesis. While a substantial number of useful reactions now exist, many more are needed to more thoroughly access chemical space. The development of new reactions often requires significant empirical screening to achieve a desirable outcome in terms of both reaction yield and stereoisomeric purity. Therefore we are targeting, through a collaborative effort, a comprehensive approach to streamline catalyst optimization. We will address the essential question of how one might ?design? an asymmetric catalyst. Our proposed plan explores how catalyst and substrate structure interact to produce specific outcomes. Careful, classical mechanistic studies that reveal the fundamental mechanistic steps of reactions will be combined with modern physical organic parameterization/modeling techniques developed in the Sigman Group. The combination of these strategies will guide catalyst design and exploration of reaction scope. The field of asymmetric catalysis has come to recognize that the accumulation of weak, noncovalent interactions is critical in a myriad of enantioselective reactions. The unifying feature of the Aims of this project is a framework for understanding these forces as they culminate in efficient and highly selective catalysis. The elucidation of catalyst design strategies that can be adopted by the organometallic, organic and biological communities is our goal. In this context, the three Aims of the proposal evaluate three diverse modes of asymmetric catalysis.
The first aim i s focused on chiral anion catalysis where the non- covalent interactions responsible for asymmetric catalysis have been historically difficult to define due to the complexity of interrogating the substrate/catalyst contacts. We will exploit new technology developed in the Sigman group aided through previous collaborative studies between the Toste/Sigman and Miller/Sigman labs that allow mathematical relationships to be discovered, relating substrate and catalyst structure to physical organic measurements. This methodology not only allows for effective prediction, and thus the design of better performing catalysts, but also provides a contemporary, data-intensive approach to mechanistic study. In the second aim, we increase the complexity by evaluating organometallic reactions in combination with chiral anion catalysis (sometimes with two chiral elements) to develop a portfolio of new alkene difuntionalization reactions that have been initiated within both the Toste and Sigman labs. In the final aim, we ask questions pertaining to systems with greater dynamic aspects of both substrate and catalyst in the context of small peptide-catalyzed processes studied in the Miller lab. These efforts will test the limits of the modeling techniques as well as potentially impact the broad fields of directed evolution and enzyme catalyst design.

Public Health Relevance

The goal of this collaborative research program is to combine modern data analysis tools with the development of new organic synthetic reactions. The approach promises to streamline reaction optimization and to unveil the factors governing effective catalysis. New enantioselective reactions that facilitate the synthesis of biologically-relevant small molecules and mechanistic insight are among the deliverables of this effort.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM121383-01
Application #
9213619
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Lees, Robert G
Project Start
2016-12-15
Project End
2020-11-30
Budget Start
2016-12-15
Budget End
2017-11-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Utah
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Biswas, Souvagya; Kubota, Koji; Orlandi, Manuel et al. (2018) Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. Angew Chem Int Ed Engl 57:589-593
Coelho, Jaime A S; Matsumoto, Akira; Orlandi, Manuel et al. (2018) Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. Chem Sci 9:7153-7158
Crawford, Jennifer M; Stone, Elizabeth A; Metrano, Anthony J et al. (2018) Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones. J Am Chem Soc 140:868-871
Toste, F Dean; Sigman, Matthew S; Miller, Scott J (2017) Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Acc Chem Res 50:609-615
Orlandi, Manuel; Toste, F Dean; Sigman, Matthew S (2017) Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angew Chem Int Ed Engl 56:14080-14084
Orlandi, Manuel; Coelho, Jaime A S; Hilton, Margaret J et al. (2017) Parametrization of Non-covalent Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. J Am Chem Soc 139:6803-6806
Orlandi, Manuel; Hilton, Margaret J; Yamamoto, Eiji et al. (2017) Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. J Am Chem Soc 139:12688-12695