A wide variety of RNA researchers synthesize their RNA using the enzyme T7 RNA polymerase, as this enzyme is robust and can yield large quantities of RNA, at any length scale. However, undesired products typically contaminate the desired RNA, in often unpredictable ways. This is perhaps most impactful currently in the mRNA therapeutics field, where contaminating double stranded RNAs can trigger a potentially lethal innate immune response, but contaminants almost certainly impact other studies as well, from basic research in cell and molecular biology and biochemistry/biophysics, to synthetic biology, to RNA nanotechnology. Gel purifications are tedious, low yield, and imperfect (indeed, the darkest band on the gel may not be the correct product, and even the correct length RNA pool can be heterogeneous!). Longer RNA impurities derive from correct RNA, reducing yields at synthesis, and can be distributed across a wide range of lengths, making gel analysis problematic. Building on new mechanistic understandings, this project will develop systems that limit the conditions that give rise to these impurities, specifically by inhibiting the off-pathway reactions, and will develop simple affinity purification approaches ? all with an aim towards achieving monodisperse RNAs of defined length and sequence. Sensitive analytical and functional assays for success will be developed and applied to guide design. Tools will be developed with an eye towards broad adoption by a variety of researchers.

Public Health Relevance

The proposed research is relevant to public health because RNA is a molecule fundamental to nature's Central Dogma of life, and is now used in a wide variety of research, technologies, and potential therapeutics. Since impurities in that RNA is recognized to impede progress in the development of public health solutions, this work aims to dramatically improve the quality of RNA. As such, this work is central to NIH's mission of fostering fundamental creative discoveries and innovative research strategies as a basis for ultimately protecting and improving health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM134042-02
Application #
10127670
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Sammak, Paul J
Project Start
2020-04-01
Project End
2024-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
2
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Massachusetts Amherst
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
153926712
City
Hadley
State
MA
Country
United States
Zip Code
01035