Polyspermy, or fertilization of an egg by more than 1 sperm, is believed to be the cause of at least 5% of spontaneous pregnancy loss in humans. To inhibit fertilization by additional sperm, eggs have developed preventative mechanisms known as blocks to polyspermy. The block at the level of the egg extra cellular coat has been well characterized in many different animal species, and the block at the level of the egg plasma membrane is understood in some non-mammalian species. However, virtually nothing is known about the membrane block to polyspermy in mammalian eggs, despite data dating back 50-90 years that provide evidence for its existence. Our recent data demonstrates that sperm-induced Ca2+ signaling and the egg actin cytoskeleton are 2 components involved in this post-fertilization change that transforms the egg membrane from a form that supports fertilization to 1 that prevents it. The broad, long-term goal of this project is elucidating the mechanism of the membrane block to polyspermy, from the fertilization-associated signaling that initiates membrane block establishment to the changes in the egg membrane and cortex that prevent additional fertilization. To make progress toward this goal and to build on our recent published and preliminary data, our studies in this proposal will address the following specific aims.
Specific Aim 1 will determine the mechanisms by which sperm and sperm-induced Ca2+ signaling induce the establishment of the membrane block.
This aim will identify what sperm component(s) is involved in membrane block establishment and how sperm-induced Ca2+ signaling affects characteristics of the membrane block.
Specific Aim 2 will characterize the next step in the pathway following Ca2+ by identifying the Ca2+-dependent effector molecules that are involved in the establishment of the membrane block to polyspermy. Finally, Specific Aim 3 will focus on the later steps of the pathway culminating in the membrane block to polyspermy, examining specific changes in the egg membrane and cortex.
This aim will test the hypotheses that cortical granule exocytosis, endocytosis, and post-fertilization changes in cortex composition and membrane order contribute to the down-regulation of egg membrane receptivity to sperm that follows fertilization. These inquiries into sperm-induced signaling, calcium, and post-fertilization membrane and cortical dynamics will provide important insights into the cellular and molecular mechanisms underlying the mammalian membrane block to polyspermy, advancing our knowledge of this fundamental question in reproductive and developmental biology.
Showing the most recent 10 out of 16 publications