This grant will examine the use of new statistical methods for better identifying groups of respondents who differ in the effects of contexts (families, schools, and communities) on outcomes. The grant focuses on the use of regression mixture models, which have the unique ability to identify groups of subjects based on the relationship of predictors with outcomes. This work focuses on the use of these methods under conditions encountered when assessing the effects of contexts with real data. Specifically, we aim to: 1) test new methods for validating the results of regression mixtures;2) examine the use of regression mixtures for assessing complex moderation where many contextual variables come together to cause differential effects;and 3) test the use of regression mixtures for assessing multilevel contextual effects, including developing a set of best practices for the use of these methods.
These aims will be investigated through the use of Monte Carlo simulations as well as applications with three real datasets looking at the effects of families, schools, and communities on physical activity, achievement and social skills, and the development of depression. This grant aims to provide a basis for better finding differential effects, the tools developed will allow for better understanding of differences in the effects of environmental contexts which are expected to inform efforts to prevent and treat health problems.
This proposal aims to develop and test statistical tools to allow researchers to better understanding individual differences in the effects of contexts. This has important implications for creating public health interventions which are tailored to the specific needs of individuals, allowing for the targeting of those who are most likely to benefit.
Showing the most recent 10 out of 13 publications