Meiotic sex chromosome inactivation (MSCI) during spermatogenesis is characterized by transcriptional silencing of genes on both the X and Y chromosomes in mid to late pachytene spermatocytes. MSCI is believed to result from meiotic silencing of unpaired DNA because the X and Y chromosomes remain largely unpaired throughout first meiotic prophase. Thus, unlike X-chromosome inactivation in female embryonic or somatic cells, where 25-30% of X-linked structural genes have been reported to escape inactivation, there have been no previous reports of genes that escape the silencing effects of MSCI in primary spermatocytes. However, we recently discovered that many X-linked microRNAs (miRNAs) are transcribed and processed in pachytene spermatocytes. This unprecedented escape from MSCI suggests that these miRNAs participate in one or more critical functions at this stage of spermatogenesis. This is corroborated by our preliminary finding that chimeric mice carrying a high percentage of cells bearing a knockout of a major cluster of X-linked miRNA genes display a fertility defect manifest as a block during the meiotic phase of spermatogenesis. This is significant because despite recent reports describing expression of an abundance of miRNAs and other small, non-coding RNAs during spermatogenesis, essentially nothing is known about the function of any of these. In this application, we first propose to investigate the molecular mechanism by which these X-linked miRNA genes escape MSCI (Aim 1). We then propose to test two hypotheses (which are not mutually exclusive) regarding function of these miRNAs, including their role as post- transcriptional regulators of autosomal mRNAs that are synthesized during meiosis but not translated until the postmeiotic period (Aim 2), and their role in regulating the process of MSCI itself (Aim 3). This study is highly novel in that it is designed to reveal an unprecedented mechanism of escape from MSCI, and to identify actual functions of those X-linked miRNAs that undergo this escape during spermatogenesis.

Public Health Relevance

Understanding the molecular and genetic mechanisms by which sperm are produced is critically important for diagnosis and treatment of male infertility, as well as for the development of non-hormonal male-specific contraceptives. Data from the present study will contribute insight into the function of X-linked miRNAs in the control of sperm production and male fertility.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD060858-04
Application #
8447585
Study Section
Cellular, Molecular and Integrative Reproduction Study Section (CMIR)
Program Officer
Moss, Stuart B
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$372,484
Indirect Cost
$72,431
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Tang, Chong; Klukovich, Rachel; Peng, Hongying et al. (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 115:E325-E333
Skinner, Michael K; Ben Maamar, Millissia; Sadler-Riggleman, Ingrid et al. (2018) Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 11:8
Zhang, Ying; Tang, Chong; Yu, Tian et al. (2017) MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biol 18:105
Yan, Wei (2017) Mark it for destruction: a novel role of mRNA methylation in maternal-to-zygotic transition†. Biol Reprod 96:829-830
Yan, Wei (2017) An interview with Magdalena Zernicka-Goetz. Biol Reprod 96:503-504
Halim, Danny; Wilson, Michael P; Oliver, Daniel et al. (2017) Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci U S A 114:E2739-E2747
Yanagimachi, Ryuzo; Harumi, Tatsuo; Matsubara, Hajime et al. (2017) Chemical and physical guidance of fish spermatozoa into the egg through the micropyle†,‡. Biol Reprod 96:780-799
Yan Editor-In-Chief Biology Of Reproduction, Wei (2017) piRNA-independent PIWI function in spermatogenesis and male fertility. Biol Reprod 96:1121-1123
Yu, Tian; Tang, Chong; Zhang, Ying et al. (2017) Microfluidics-based digital quantitative PCR for single-cell small RNA quantification. Biol Reprod 97:490-496
Yuan, Shuiqiao; Schuster, Andrew; Tang, Chong et al. (2016) Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143:635-47

Showing the most recent 10 out of 45 publications