The proper development of the nervous system during early pregnancy is particularly vulnerable to both environmental toxins and the effects of inherited genetic factors which can lead to errors in connectivity in the postnatal brain. Valproic acid (VPA) is an antiepileptic and mood stabilizing drug that, when administered during pregnancy, causes neurodevelopmental defects such as behavioral and cognitive dysfunction, including maladaptations observed in children with autism spectrum disorder and intellectual delay. The severity of effects appears to be dependent upon gestational time of maternal exposure. VPA is a histone deacetylase inhibitor, suggesting that it interferes with gene expression by an epigenetic mechanism. We have observed that administration of VPA to pregnant mice during early gestation increases the expression of brain-derived neurotrophic factor (BDNF), a neurotrophin that acts as a critical modulator of neurogenesis in the fetal brain. This has led to the working hypothesis for this proposal: epigenetic stimulation of BDNF expression by VPA during fetal brain development causes defective forebrain neurogenesis and behavioral deficits. This hypothesis will be tested by determining 1) the extent to which VPA-induced stimulation of BDNF expression is mediated by DNA methylation and/or covalent histone modification at specific BDNF gene promoters;2) the extent to which the proportions of cortical pyramidal neurons and GABAergic interneurons are altered by embryonic exposure to VPA;and 3) the role of altered BDNF signaling, through the trkB receptor, in mediating the effects of VPA on embryonic forebrain neurogenesis and cognition. This will be accomplished utilizing a novel transgenic mouse with a mutant trkB receptor, engineered to be selectively and reversibly blocked by administration of an exogenous antagonist. The prediction for the latter experiments is that VPA will fail to induce neurogenetic defects and abnormal behavior when the BDNF signaling pathway is inhibited. The goal of this research is to determine the mechanism by which fetal exposure to a clinically used agent, VPA, induces neurodevelopmental defects. This would enable the identification of signaling pathways that can be targeted to avoid adverse neurodevelopmental effects in pregnant women who require VPA for control of epilepsy and bipolar disorder. In addition, the project seeks to establish a paradig that would enable systematic investigation of the mechanisms by which environmental agents affect brain development as well as how environmental and genetic factors might interact to cause autism and other neurodevelopmental disorders.

Public Health Relevance

Valproic acid (VPA), a widely-used antiepileptic and mood stabilizing drug, causes neurodevelopmental defects in children of women exposed during pregnancy. Based on novel preliminary results generated by the PIs, it is postulated that VPA stimulates the expression of the neurotrophin, brain-derived neurotrophic factor (BDNF), by epigenetic desilencing of the BDNF gene, leading to defective brain development and consequently abnormal behavior. Successful completion of this project would lead to identification of signaling pathways that can be targeted to avoid adverse neurodevelopmental effects in children of mothers for whom VPA is the only treatment option for controlling epilepsy and bipolar disorder.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD067135-02
Application #
8431364
Study Section
Special Emphasis Panel (ZRG1-CB-L (55))
Program Officer
Giacoia, George
Project Start
2012-03-01
Project End
2017-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
2
Fiscal Year
2013
Total Cost
$302,269
Indirect Cost
$105,351
Name
University of Maryland Baltimore
Department
Physiology
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Konopko, Melissa A; Densmore, Allison L; Krueger, Bruce K (2017) Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 39:507-518
Bissonette, Gregory B; Schoenbaum, Geoffrey; Roesch, Matthew R et al. (2015) Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex. Biol Psychiatry 77:454-64
Almeida, Luis E F; Roby, Clinton D; Krueger, Bruce K (2014) Increased BDNF expression in fetal brain in the valproic acid model of autism. Mol Cell Neurosci 59:57-62
Bissonette, Gregory B; Bae, Mihyun H; Suresh, Tejas et al. (2014) Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. Behav Brain Res 259:143-51
Pitkänen, Asla; Ndode-Ekane, Xavier E; ?ukasiuk, Katarzyna et al. (2014) Neural ECM and epilepsy. Prog Brain Res 214:229-62