Our long-term goal is to understand how signals from the microenvironment, or niche, affect hematopoietic stem cells during normal development and in malignancies. The proposed studies focus on the interplay between non-canonical and canonical Wnt signaling in niche cells during primitive hematopoiesis. Canonical and non-canonical Wnt pathways are often activated simultaneously and function to inhibit each other. This is important because imbalances in Wnt signaling lead to human birth defects and cancers;however the mechanisms that regulate this equilibrium are poorly understood. As described below, we have identified a novel activator of non-canonical Wnt signaling that is required for primitive hematopoiesis and likely contributes to maintaining the proper balance of Wnt signaling throughout development. The transcription factor GATA2 is required in the ectoderm of Xenopus embryos to induce expression of a protein that then signals to the mesoderm to enable it to form blood. Our preliminary data support the hypothesis that GATA2 induces expression of a novel protein, TRIL, which activates non- canonical Wnt signaling thereby enabling cells to be specified as blood progenitors. We will test this hypothesis and determine the mechanism by which TRIL signals, as follows (1) Determine whether ectodermal GATA2 represses canonical and activates non-canonical Wnt signaling, and whether this is necessary and sufficient for hematopoiesis. We will examine endogenous Wnt pathway activation in Xenopus embryos in which GATA2 function is perturbed, and will block non-canonical Wnt signaling in whole animals and tissue recombinants to ask whether Wnt signaling is necessary in ectoderm and/or mesoderm for blood formation. (2) Determine whether TRIL is required hematopoiesis and for activation of non-canonical Wnt signaling. We will analyze blood formation in Xenopus embryos in which TRIL expression is knocked down and will ask whether activation of non-canonical Wnt signaling is sufficient to rescue blood in these embryos. We will compare the level of activation of endogenous non-canonical Wnt signaling in embryos in which TRIL expression is perturbed. (3) Determine the molecular mechanism by which TRIL activates non-canonical Wnt signaling. We will use gain- and loss-of- function assays in Xenopus to test whether TRIL function is required upstream, downstream or in parallel with known components of non-canonical Wnt pathways. In addition, we will examine the subcellular localization of TRIL in Xenopus embryos relative to other Wnt pathway components and perform an vivo structure-function analysis of TRIL. Lastly, we will identify proteins that interact with TRIL in the context of Wnt signal transduction. )

Public Health Relevance

Wnt proteins play critical roles in development and adult homeostasis. We have identified a novel protein that influences the balance of Wnt signaling, and the proposed studies will examine its functions and mechanism of action during embryonic development. Our results will set the stage for future studies of whether this gene product plays a protective and/or causal role in human cancers and congenital anomalies such as neural tube closure defects.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
1R01HD067473-01A1
Application #
8235673
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Coulombe, James N
Project Start
2012-02-01
Project End
2017-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
1
Fiscal Year
2012
Total Cost
$310,213
Indirect Cost
$102,713
Name
University of Utah
Department
Biology
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Kim, Hyung-Seok; McKnite, Autumn; Xie, Yuanyuan et al. (2018) Fibronectin type III and intracellular domains of Toll-like receptor 4 interactor with leucine-rich repeats (Tril) are required for developmental signaling. Mol Biol Cell 29:523-531
Christian, Jan L; Heldin, Carl-Henrik (2017) The TGF? superfamily in Lisbon: navigating through development and disease. Development 144:4476-4480
Green, Yangsook Song; Kwon, Sunjong; Christian, Jan L (2016) Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. Gene Expr Patterns 20:55-62
Green, Yangsook Song; Kwon, Sunjong; Mimoto, Mizuho S et al. (2016) Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. Development 143:4016-4026
Mimoto, Mizuho S; Kwon, Sunjong; Green, Yangsook Song et al. (2015) GATA2 regulates Wnt signaling to promote primitive red blood cell fate. Dev Biol 407:1-11
Christian, Jan L (2012) Morphogen gradients in development: from form to function. Wiley Interdiscip Rev Dev Biol 1:3-15
Mimoto, Mizuho S; Christian, Jan L (2012) Friend of GATA (FOG) interacts with the nucleosome remodeling and deacetylase complex (NuRD) to support primitive erythropoiesis in Xenopus laevis. PLoS One 7:e29882
Mimoto, Mizuho S; Christian, Jan L (2011) Manipulation of gene function in Xenopus laevis. Methods Mol Biol 770:55-75