Title: Optimal Oxygenation in Neonatal Lung Injury The current guidelines for neonatal resuscitation recommend the use of 21% oxygen during initial resuscitation of term newborn infants and use of blended supplemental oxygen to maintain target saturations to provide adequate oxygen while limiting damage from reactive oxygen radicals. The American Academy of Pediatrics recommends maintaining PaO2 between 50 and 80 mmHg in the management of sick neonates. These recommendations are based on studies using oxygen saturations in human infants and through translational studies in neonatal animal models without lung disease. Optimal oxygen concentration and target oxygen saturation range during resuscitation and ventilation of term neonates with lung injury/disease has been tested by this lab in term newborn lambs. SPO2 is not the sole determinant of oxygenation. When considering treatment that focuses on protecting brain function following birth with meconium aspiration/asphyxia, the same treatment may compromise pulmonary function. Transition to air breathing is a complex physiologic event, more so when there is significant lung disease. To further minimize the impact of oxygen damage we propose to study term lambs with lung injury induced by aspiration of meconium during gasping respirations as a consequence of umbilical cord occlusion and asphyxia (?asphyxia-MAS?). Limiting optimal target oxygen levels to two groups, 90-94% and 95-99% (that were found to be best treatment conditions during past studies) we propose to study 3 additional specific aims to improve both brain and lung function. The first specific aim will evaluate the hemoglobin level that optimizes cerebral O2 delivery and extraction, achieved by improving placental transfusion at birth using cord milking procedures that increase circulating fetal RBC?s.
The second aim will randomize the target PaCO2 and pH to provide the best cerebral blood flow while maintaining low pulmonary vascular resistance, continually managed by monitoring end-tidal CO2. The last specific aim will study the influence of hypothermia treatment currently used clinically following asphyxial birth to preserve brain function. Many factors can influence newborn clinical management of lung disease. We intend to clarify management criteria to better control the factors that influence hemodynamic measures of blood flow, pulmonary artery pressure and gas exchange to optimize oxygen delivery and extraction for both brain and lung function while limiting damage from oxygen free radicals.

Public Health Relevance

Title: Optimal Oxygenation in Neonatal Lung Injury Health relevance: Oxygen supplementation during resuscitation and subsequent ventilation of newborn infants with lung disease is a delicate balance between providing adequate tissue oxygen delivery and the damage from of free radicals that overwhelm their deficient antioxidant defense system. The studies to date have produced 24 manuscripts (see appendix) describing the effects of oxygen therapy during newborn ventilation; additional work is needed to further study the influences of hypothermia treatment or carbon dioxide and hemoglobin levels during this critical period. Results from the proposed studies are likely to influence guidelines for oxygen therapy during management of sick, term infants with lung disease.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
2R01HD072929-06
Application #
9384013
Study Section
Pregnancy and Neonatology Study Section (PN)
Program Officer
Raju, Tonse N
Project Start
2012-08-06
Project End
2017-10-31
Budget Start
2017-09-01
Budget End
2017-10-31
Support Year
6
Fiscal Year
2017
Total Cost
Indirect Cost
Name
State University of New York at Buffalo
Department
Pediatrics
Type
Schools of Medicine
DUNS #
038633251
City
Amherst
State
NY
Country
United States
Zip Code
14228
Lakshminrusimha, Satyan; Shankaran, Seetha; Laptook, Abbot et al. (2018) Pulmonary Hypertension Associated with Hypoxic-Ischemic Encephalopathy-Antecedent Characteristics and Comorbidities. J Pediatr 196:45-51.e3
Chandrasekharan, P; Rawat, M; Reynolds, A M et al. (2018) Apnea, bradycardia and desaturation spells in premature infants: impact of a protocol for the duration of 'spell-free' observation on interprovider variability and readmission rates. J Perinatol 38:86-91
Chandrasekharan, Praveen; Rawat, Munmun; Gugino, Sylvia F et al. (2018) Effect of various inspired oxygen concentrations on pulmonary and systemic hemodynamics and oxygenation during resuscitation in a transitioning preterm model. Pediatr Res 84:743-750
Vali, Payam; Vento, Maximo; Underwood, Mark et al. (2018) Free radical damage can cause serious long-lasting effects. Acta Paediatr 107:2099
Vali, Payam; Lakshminrusimha, Satyan (2017) The Fetus Can Teach Us: Oxygen and the Pulmonary Vasculature. Children (Basel) 4:
Chandrasekharan, Praveen; Kozielski, Rafal; Kumar, Vasantha H S et al. (2017) Early Use of Inhaled Nitric Oxide in Preterm Infants: Is there a Rationale for Selective Approach? Am J Perinatol 34:428-440
Manja, Veena; Saugstad, Ola D; Lakshminrusimha, Satyan (2017) Oxygen Saturation Targets in Preterm Infants and Outcomes at 18-24 Months: A Systematic Review. Pediatrics 139:
Chandrasekharan, Praveen; Vali, Payam; Rawat, Munmun et al. (2017) Continuous capnography monitoring during resuscitation in a transitional large mammalian model of asphyxial cardiac arrest. Pediatr Res 81:898-904
Vali, Payam; Lakshminrusimha, Satyan (2017) Case 2: Beware of Lumps and Bumps after Cooling! Neoreviews 18:e441-e444
Cummings, James J; Lakshminrusimha, Satyan (2017) Oxygen saturation targeting by pulse oximetry in the extremely low gestational age neonate: a quixotic quest. Curr Opin Pediatr 29:153-158

Showing the most recent 10 out of 47 publications