The goal of the proposed research is to determine the mechanisms by which the FOXO boxO transcription factors, FSH and ovarian---derived growth factors (activin and BMP2) regulate ovarian follicular growth and apoptosis and hence fertility. By disrupting the Foxo1 and Foxo3 genes selectively in granulosa cells, we have generated mice that are infertile with a novel phenotype that is distinct from all other known mutations in granulosa cells. The infertile phenotype can be traced to: 1) Reduced follicle growth and apoptosis leading us to discover a new paradigm: that FOXO1/3 act in granulosa cells to mediate both follicle maturation and apoptosis, and that these distinct functions of FOXO1/3 are tightly linked to specific interactions with either the activin or BMP2 signaling pathways, respectively. 2) Defective oocyte development that appears to be mediated primarily by changes in metabolic/endocrine factors emanating from the mutant cumulus cells. Analyses of cumulus and oocyte functions in the mutant mice should lead us to discover specific FOXO1/3 targets that regulate of oocyte maturation and 3) Alterations in ovarian feedback to the pituitary leading to suppressed FSH that appears to be mediated by a novel ovarian---derived factor that is not inhibin. Characterizing a new Fshb suppressor(s) has far---ranging implications for developing alternative contraceptive targets. Thus, the Foxo1/3 conditional KO mice provide a unique model in which to determine the physiological, molecular and biochemical mechanisms by which these transcriptional regulators impact apoptosis, oocyte maturation and ovarian production of a novel factor(s) that suppresses pituitary Fshb expression. To analyze these functions of Foxo1/3 that control reproductive success, we propose the following Specific Aims: I) Determine how interactions between FSH, activin, BMP2 and FOXO1/3 impact granulosa cell apoptosis in intact follicles. II) Determine the changes in cumulus cell and oocyte functions in the Foxo1/3 mutant mice that impact fertility. III) Characterize the novel Fshb inhibitory factor(s that emanate from the Foxo1/3 mutant ovaries.

Public Health Relevance

Depleting Foxo1/3 in granulosa cells exerts a profound effect on follicle growth, apoptosis, oocyte maturation and pituitary functions underscoring the central role of these transcriptional regulators in ovarian biology and reproductive success. Thus, endocrine and paracrine pathways that regulate FOXO1/3 can profoundly impact fertility and likely contribute to follicular dysfunction in women with PCOS and premature ovarian failure. Results should lead to new strategies for improved IVF procedures and contraceptives.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
1R01HD076980-01A1
Application #
8694652
Study Section
Integrative and Clinical Endocrinology and Reproduction Study Section (ICER)
Program Officer
Taymans, Susan
Project Start
2014-05-15
Project End
2019-04-30
Budget Start
2014-05-15
Budget End
2015-04-30
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Richards, JoAnne S; Ren, Yi A; Candelaria, Nicholes et al. (2018) Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 39:1-20
Kawai, Tomoko; Richards, JoAnne S; Shimada, Masayuki (2018) The Cell Type-Specific Expression of Lhcgr in Mouse Ovarian Cells: Evidence for a DNA-Demethylation-Dependent Mechanism. Endocrinology 159:2062-2074
Monsivais, Diana; Matzuk, Martin M; Pangas, Stephanie A (2017) The TGF-? Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 9:
Seugnet, Laurent; Dissel, Stephane; Thimgan, Matthew et al. (2017) Identification of Genes that Maintain Behavioral and Structural Plasticity during Sleep Loss. Front Neural Circuits 11:79
Adams, Jaye; Liu, Zhilin; Ren, Yi Athena et al. (2016) Enhanced Inflammatory Transcriptome in the Granulosa Cells of Women With Polycystic Ovarian Syndrome. J Clin Endocrinol Metab 101:3459-68
Rodriguez, Amanda; Tripurani, Swamy K; Burton, Jason C et al. (2016) SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice. Biol Reprod 95:44
Rodriguez, Amanda; Pangas, Stephanie A (2016) Regulation of germ cell function by SUMOylation. Cell Tissue Res 363:47-55
Kawai, Tomoko; Yanaka, Noriyuki; Richards, JoAnne S et al. (2016) De Novo-Synthesized Retinoic Acid in Ovarian Antral Follicles Enhances FSH-Mediated Ovarian Follicular Cell Differentiation and Female Fertility. Endocrinology 157:2160-72
Ren, Yi A; Mullany, Lisa K; Liu, Zhilin et al. (2016) Mutant p53 Promotes Epithelial Ovarian Cancer by Regulating Tumor Differentiation, Metastasis, and Responsiveness to Steroid Hormones. Cancer Res 76:2206-18
Umehara, Takashi; Kawashima, Ikko; Kawai, Tomoko et al. (2016) Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology 157:4899-4913

Showing the most recent 10 out of 13 publications