Pharmacotherapy during critical periods of brain development can adversely affect nervous system function. This poses a challenge for the treatment of neurological disorders, where the underlying illness and the treatment both may have adverse effects. One example of this is balancing the choice of medication for the treatment of seizures, one of the most common neurological disorders of infancy. Seizures in neonates are a common occurrence after hypoxia (or hypoxia-ischemia); these seizures are typically aggressively treated with anticonvulsant drugs. Hypoxia-induced seizures are associated with a profound increase in risk for later-in-life seizures, as well as significant developmental delays and intellectual disabilities. However, the outcomes due to the seizures and the outcomes due to the drug therapy are confounded. In this application, we propose to evaluate: (1) the effect of hypoxia-induced seizures, (2) the effect of the three most common anti-seizure drugs used in babies (phenobarbital, phenytoin, levetiracetam), and (3) the efficacy of a neuroprotective intervention (melatonin). We will determine the degree to which seizures and drugs influence brain development at the level of biochemistry (assessment of programmed cell death, oxidative stress), neurophysiology (patch-clamp recordings from neurons in hippocampal CA1 subfield), and behavior (tests of learning and memory in adult animals exposed to drugs and/or seizures as babies). We will also evaluate biomarkers of drug safety through peripheral measurement of oxidative stress and high-resolution magnetic resonance imaging of animals exposed to these early life insults. Finally, we will determine if our neuroprotective intervention ameliorates some, or all, of the adverse outcomes associated with seizures and/or drug treatment.

Public Health Relevance

Treating epilepsy in newborns is challenging because both the seizures, and the drugs used to treat seizures may adversely influence brain development. In order to identify the therapies that minimize damage to the developing brain, we will examine how several common anti-seizure medications modify the outcomes of early life seizures. We will determine the safety profile for these drugs using a preclinical rodent model by examining which of these drugs causes acute damage to the brain, and which cause lasting changes in brain function both at the cellular and behavioral level.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD091994-02
Application #
9772515
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Giacoia, George
Project Start
2018-09-01
Project End
2023-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Georgetown University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057