ChIP-chip/seq in combination with transcriptome profiling has greatly helped our understanding of the molecular mechanisms underlying many physiological and pathological processes. It has also left unanswered questions on the combinatorial and context-specific nature of mammalian transcription regulation, and created challenges for computational data integration and modeling. To address these challenges, we propose to: 1) develop the computational framework for constructing condition-specific combinatorial and probabilistic transcription regulatory modules in mammalian genomes by integrating transcription factor ChIP-chip/seq, cis-element epigenome and transcriptome data;2) apply the model in 1) to construct a comprehensive probabilistic nuclear receptor regulatory network, experimentally validate the predictions, and use the results to refine the model;3) develop and maintain an open source publicly available integrated ChIP-chip/seq data analysis pipeline Cistrome. With rapid growth of transcription factor ChIP-chip/seq, cis-element epigenome, and transcriptome datasets, our methods will integrate the available datasets, infer the important missing data, and extract maximum knowledge from individual datasets. Our resulting nuclear receptor regulatory network and computational tools will also be a good resource for the community.

Public Health Relevance

The proposed study will lead to a suite of powerful and user-friendly computational tools for integrative analysis of ever-increasing amount of and diverse sources of genomic data in understanding gene regulation in mammals. These tools will allow biologists to perform discovery- based computational analyses using state-of-the-art probabilistic data mining methods. It will also build a nuclear receptor transcription regulatory network, which will provide important insights into identifying new therapeutic targets and designing novel therapeutic strategies, especially combination therapies for nuclear receptor related diseases such as atherosclerosis, diabetes and cancer.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project (R01)
Project #
2R01HG004069-06
Application #
8187227
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Pazin, Michael J
Project Start
2006-09-27
Project End
2014-08-31
Budget Start
2011-09-14
Budget End
2012-08-31
Support Year
6
Fiscal Year
2011
Total Cost
$454,116
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Qin, Qian; Mei, Shenglin; Wu, Qiu et al. (2016) ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinformatics 17:404
Xu, Han; Xu, Kexin; He, Housheng H et al. (2016) Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression. Mol Cancer Res 14:163-172
Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J et al. (2015) RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res 75:3623-35
Sulahian, R; Casey, F; Shen, J et al. (2014) An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene 33:5637-48
Chen, Xi; Iliopoulos, Dimitrios; Zhang, Qing et al. (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1? pathway. Nature 508:103-107
Zhang, Xiaoxiao; Peterson, Kevin A; Liu, X Shirley et al. (2013) Gene regulatory networks mediating canonical Wnt signal-directed control of pluripotency and differentiation in embryo stem cells. Stem Cells 31:2667-79
Verzi, Michael P; Shin, Hyunjin; San Roman, Adrianna K et al. (2013) Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol 33:281-92
Shin, Hyunjin; Liu, Tao; Duan, Xikun et al. (2013) Computational methodology for ChIP-seq analysis. Quant Biol 1:54-70
Catic, André; Suh, Carol Y; Hill, Cedric T et al. (2013) Genome-wide map of nuclear protein degradation shows NCoR1 turnover as a key to mitochondrial gene regulation. Cell 155:1380-95
Wang, Su; Sun, Hanfei; Ma, Jian et al. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc 8:2502-15

Showing the most recent 10 out of 67 publications